为改善蜂窝结构共面的力学性能,基于传统六边形蜂窝结构,建立了六边形层级蜂窝结构,并利用层级蜂窝代替传统六边形蜂窝部分胞元层,复合成一种新型多阶式层级梯度蜂窝结构。利用显式动力学有限元方法研究了层级梯度蜂窝的共面在不同冲击速度作用下的冲击响应特性和能量吸收能力。研究结果表明:层级梯度蜂窝的变形模式与塑性坍塌强度和冲击速度有关;层级梯度蜂窝冲击端和固定端在不同冲击速度作用下的名义应力-应变曲线均与其变形模式有关;不同的复合方式会导致层级梯度蜂窝具有不同的平台应力和比吸能,且在高速冲击时其平台应力比传统六边形蜂窝提高45.4%~63.8%,能量吸收提升10.8%~34.1%。相对密度会影响层级梯度蜂窝的能量吸收能力。
网侧套管是变压器的重要组成部分,在使用过程中因绝缘击穿现象可能引起套管内部冷却油爆炸,给变压器箱体造成很大的安全隐患,因此开展网侧套管爆炸事故的定量评估具有重要意义。通过非线性有限元软件ANSYS/LS-DYNA建立了二维变压器套管模型,采用光滑粒子流体动力学法对变压器套管在内部爆炸作用下的动态响应进行了模拟,分析了不同参数对套管破坏特征的影响规律。通过基于套管径向粒子速度曲线的稳定性判断方法,评估了各套管的失稳时间。结果表明:在内部爆炸作用下,套管管壁中部在内外壁拉压联合作用下率先产生破坏,在冲击波传播过程中套管整体损伤呈凸状变化趋势。过高的爆炸当量、冷却油的存在和初始裂纹缺陷对套管保持稳定有较大影响。爆炸当量的减小可以使套管破坏模式由双向剪切破坏向受拉破坏转变,整体稳定性也随之增强。当爆源位于引线外壁时,冷却油流体所辐射出的冲击波不仅使套管失稳时间有所提前,还会造成外壁膨胀破坏范围变大。应力集中现象和有效壁厚的减小使含初始裂纹缺陷套管剪切破坏失稳现象发展迅速。
为分析超高分子量聚乙烯(ultra-high molecular weight polyethylene, UHMWPE)的应变率效应及其对超高速碰撞特性的影响规律,采用万能材料试验机和分离式霍普金森拉杆对UHMWPE纤维束进行静、动态拉伸实验,获得了不同应变率下材料的应力-应变关系,并进一步开展了UHMWPE纤维织物的超高速碰撞数值模拟。结果表明,UHMWPE的拉伸模量和强度均随应变率的升高而逐渐增大。随着材料应变率敏感系数的增大,防护结构对弹丸动能的吸收率呈现先减小后增大的趋势。
为探究围压条件下伟晶辉长岩的能量释放与破坏模式的关系,利用霍普金森压杆和LS-DYNA数值模拟软件对伟晶辉长岩开展了不同围压和不同冲击速度下的动态力学性能测试,分析其在不同围压和应变率下的能量释放特征及破坏规律。结果表明:高围压下,试样无明显塑性变形阶段,且围压状态对高应变率下的动态抗压强度有抑制作用,当冲击气压高于0.4 MPa时,动态抗压强度的增长趋势放缓;应变率和围压对伟晶辉长岩的能量与破坏模式有显著影响。随着围压的升高,试样的反射能占比增大,而透射能占比减小;能耗密度随应变率的增加而增大,当应变率为95 s–1时(对应的冲击气压为0.4 MPa)出现拐点,同时高围压下的能耗密度大于低围压下的能耗密度。对于处于围压下的试样,其破坏断面多带有一定的角度,通过LS-DYNA有限元软件模拟了试样在围压下的动态破坏过程,发现中低围压下试样多呈剪切破坏,而高围压下试样有多条剪切裂纹发育贯通,呈复合破坏模式。
为减少回采过程中残留顶底柱资源浪费,以赤峰柴胡栏子金矿为研究对象,基于LS-DYNA有限元软件,建立挤压爆破崩落放矿回采底柱数值模型,根据0.7、0.8、1.0 m 3种最小抵抗线和0.8、0.9、1.0 m 3种孔距设计9种方案,通过分析炮孔爆破过程中爆炸裂纹扩展与压力演化、有效应力和有效塑性应变时程曲线以及矿石的损伤情况,获取各方案的评判指标。采用模糊层次分析法构建目标相对优属度矩阵和模糊判断矩阵,通过综合评判选出最佳的爆破方案。结果表明:最小抵抗线取0.7 m、孔间距取0.9 m为挤压爆破崩落放矿回采底柱的最佳爆破参数。现场试验结果表明,使用优化后的爆破参数获得的爆破效果更好。
为研究含水率对硬岩材料的力学性质和能量损伤的影响规律,对不同含水状态的砂岩开展了单轴压缩试验。结果表明:砂岩试样的峰值应力、弹性模量和脆性指数随着含水率的增大而减小,峰值应变随着含水率的增大而增大;在干燥状态下,砂岩试样在破坏之前未发生明显的塑性变形,表现出显著的脆性破坏,而在饱水状态下,砂岩试样在峰前阶段出现显著的塑性变形,破坏前出现屈服平台;砂岩试样的含水率越大,吸能能力越强,能量吸收率越小,但是能量耗散越显著;砂岩试样的含水率越小,破坏时其损伤变量越大,在干燥状态下砂岩试样的破坏具有较强的冲击倾向性。研究结果可为深部地下工程围岩的稳定性控制提供理论参考。
FePSe3在高压下会出现半导体到金属的转变、超导电性以及高自旋到低自旋的转变等多种有趣的物理现象,但目前对其在高压下的晶体结构分析仍以理论研究为主,结构的不确定阻碍了对其物理性质的深入研究。为此,利用金刚石对顶砧结合高压拉曼光谱、高压同步辐射X射线衍射以及高压电输运测量,对FePSe3在高压下的行为进行了研究。结果表明,FePSe3在低于60.0 GPa的压力范围内经历了3次结构相变,完成了LP—HP1—HP2—HP3的转变。首次在实验上观测到FePSe3的高压新相HP2和HP3,并给出其可能的空间对称群。HP2相和HP3相具有超导电性,超导温度随压力的升高而降低,致使超导相图呈现“穹顶”状。研究结果为进一步厘清FePSe3的压致相变行为提供了重要的实验支撑。
状态方程与描述能量、动量、质量守恒的偏微分方程一起,构成了可求解材料动态压缩行为的完备流体力学方程组。动态压缩下,相变会导致材料内能、密度、强度等物理性质的不连续变化,需要构建多相状态方程模型才能精确描述这些变化。通过多相状态方程模型的自动组装,采用计算机智能优化算法自动校准状态方程模型参数,发展了自动化的多相状态方程建模程序AEOS(automated equation of state)。利用AEOS,构建了锡的3套状态方程模型,3套模型的计算结果与相关实验结果基本一致,验证了AEOS程序的适用性。将构建的状态方程模型应用于一维流体力学模拟,发现锡冲击到17 GPa再等熵卸载到常压的压力-温度路径会经过
针对口径为50 mm的一级气体炮制退器,基于三维非定常Navier-Stokes方程,结合多区域动网格技术,对侧孔倾角为120°、孔径为16 mm的制退器流场形态进行了数值模拟,分析了发射压力对冲击波形成、发展和衰减的变化规律以及制退效率的影响。搭建了一级气体炮发射平台,并进行了制退效率测试。实验结果表明:模拟计算得到的一级气体炮制退器的制退效率与实验结果的最大相对偏差小于1.25%,制退器的流场动态发展与实验结果高度一致;制退效率随发射压力的升高呈线性增大,对于侧孔倾角为120°、孔径为16 mm的制退器,当发射压力由5 MPa提升至10 MPa时,制退效率由4.87%提高至12.71%。
为研究G550冷弯钢在高温和高应变率下的动态力学性能,采用高温同步控制霍普金森拉杆装置,开展了不同温度下的高应变率拉伸试验,并在高速液压拉伸试验机上进行了室温下的中应变率拉伸试验。通过获得的应力-应变曲线,得到了材料的本构模型,结合微观形貌分析,探究了温度和应变率对流变应力的影响。结果表明:G550冷弯钢具有明显的应变率强化和温度软化效应。在特定的高应变率范围内(1000~1500 s−1),温度对流变应力的影响大于应变率。基于温度软化系数随温度变化的特征,提出了G550冷弯钢的修正Johnson-Cook本构模型。该模型可以较好地描述G550冷弯钢在高温和高应变率下的动态力学行为,从而为G550冷弯钢在高温、爆炸冲击相关的有限元仿真提供参考。
延性金属的层裂行为包含孔洞成核、长大和聚集过程,其中孔洞聚集难以通过实验方法直接观测。采用有限元分析方法,研究了延性金属层裂过程中孔洞之间的聚集行为和竞争机制,讨论了孔洞间初始韧带距离、孔洞直径和孔洞位置分布对孔洞聚集的影响。通过实时统计孔洞长大过程中直径的变化,定量分析孔洞聚集的起始时刻。计算结果显示:当初始韧带距离由20 μm增加至50 μm时,相同孔径孔洞间聚集的起始时间不断延长,聚集时的直径增长加速度由1.717 Gm/s2降至0.602 Gm/s2;具有不同孔径比的孔洞之间发生聚集时,小孔优先向大孔靠拢;45°分布方式的孔洞在长大阶段的直径增长加速度最大,约为3.179 Gm/s2,且最早发生聚集。计算结果显示,在三孔聚集中,初始韧带距离和孔径相同的孔洞之间几乎同时发生聚集并贯通,且孔洞间聚集的起始时间随着初始韧带距离的增加而延长,大孔向附近小孔聚集的起始时刻较迟。计算结果揭示了层裂实验中难以观察到的孔洞长大和聚集的细观物理过程,对了解材料层裂的物理过程和本质具有重要的参考价值。
碳纤维增强复合材料(carbon fiber-reinforced polymer,CFRP)具有优越的抗侵彻性能,正逐渐应用于舰船抗爆抗冲击防护设计。为了研究钢-CFRP层合板在聚能侵彻体作用下的防护性能,基于任意拉格朗日-欧拉方法建立聚能装药空中爆炸对钢-CFRP层合板破坏的数值模型,探究聚能装药的空中爆炸载荷特性及其对钢-CFRP层合板的毁伤机理。采用等面密度方法,设计了CFRP作为面板、背板和夹芯层时多种钢-CFRP层合板形式,通过侵彻后侵彻体头部降速以及层合板破口大小,讨论了CFRP敷设位置对层合板防护效果的影响,给出了较优的敷设形式。在此基础上,对层合板的厚度进行优化。结果表明:CFRP-钢-CFRP夹芯结构在聚能侵彻体作用下的防护效果最佳,较佳的厚度比为4.0∶1.4∶4.0。
在地下空间开发建设过程中,钻爆法开挖诱发的爆破地震波对地下管道安全至关重要。当爆源距离管道较近时,波阵面的曲率会对管道的爆破动力响应特性产生显著影响。采用波函数展开法研究了柱面SH波爆破作用下管道的动应力集中问题,首先讨论了混凝土管道和PVC管道的动应力集中系数分布规律,进而探讨了一般情况下波源到管道轴线距离、入射波频率以及管道与土层剪切模量比
采用率相关的晶体塑性本构模型研究了冲击荷载作用下晶体取向对面心立方金属内部孔洞增长的影响。利用VUMAT子程序,将率相关晶体塑性本构模型嵌入ABAQUS有限元软件中,分析了单晶晶内孔洞、双晶晶界孔洞和三角晶界孔洞的增长行为,结果显示:孔洞的变形模式与晶体取向、晶界位置(冲击加载方向与晶界的相对方位)、加载方向相关,晶体的滑移线模型与晶界位置之间的关系可以反映孔洞增长方向。对于晶内孔洞,加载方向越接近[011],孔洞开始增长变形时间越晚,但孔洞的总体增长变形越大;加载方向越接近[111],孔洞开始增长变形时间越早,但孔洞的总体增长变形越小。对于晶界处孔洞,晶界位置影响孔洞的部分变形,但不会影响总体变形。晶体受冲击之后,若孔洞增长方向沿晶内,则晶界会促进孔洞沿晶内增长;若增长方向沿晶界,则晶界会促进孔洞沿晶界方向增长,抑制其向晶内增长。
钢筋混凝土(reinforced concrete,RC)板作为工程结构的主要受力构件,在遭受意外爆炸或恐怖袭击时极易发生破坏,甚至引起结构的整体倒塌,因此,了解和预测混凝土板在爆炸作用下的动力响应,对增强工程结构的抗爆防护能力、减轻生命和财产经济损失具有非常重要的意义。收集整理了国内外文献中普通RC板爆炸试验和基于试验进行参数化分析的数值模拟数据,采用机器学习回归算法中的支持向量机和高斯过程回归两种算法等对近场爆炸作用下RC板的最大位移进行预测;运用改进的偏差-方差分解原理对模型的泛化性能进行分析,同时将机器学习模型与现有的预测方法进行对比;最后,采用置换特征重要性和Sobol全局敏感性分析方法,从局部和整体对模型特征进行解释,增加模型的可靠性。结果表明:支持向量机和高斯过程回归两种机器学习方法的泛化性能都较好,并且高斯过程回归算法的预测效果优于支持向量机算法。对比现有预测方法发现,机器学习方法更优,具有较高的预测精度和计算效率,且得出了不同输入参数对模型输出结果的影响,实现了对输出结果的可解释性,进一步验证了其可靠性。研究结果可为机器学习在爆炸领域的应用提供参考。
基于三维细观建模方法和Kong-Fang混凝土材料模型,开展了某弹体侵彻块石混凝土遮弹层的数值模拟研究。采用块石与基体混凝土共节点建模和面面接触建模两种方式,探讨了界面对弹体过载、侵彻深度以及混凝土与块石损伤破坏的影响。数值模拟结果表明:块石与混凝土共节点建模方式强化了块石与混凝土间的界面效应,高估了靶体的整体性,而面面接触建模方式弱化了界面效应,故采用共节点建模方式时,弹体过载(加速度)偏大,侵彻深度偏小;采用共节点建模方式时,损伤区域沿C100混凝土和块石交界面发展,损伤区域连续,而采用面面接触建模方式时,损伤区域在弹道近区连续,近区与远区损伤不连续。基于数值模拟结果,进一步对块石混凝土遮弹层的工程设计计算提出了实用性建议。
针对JO-9C(Ⅲ)炸药的冲击起爆判据参数缺失问题,结合理论模型和模拟计算结果,拟合得到了JO-9C(Ⅲ)炸药的3种不同形式的起爆判据参数。利用AUTODYN软件,建立了不同尺寸钛飞片冲击起爆JO-9C(Ⅲ)炸药的数值模型,得到不同尺寸钛飞片起爆JO-9C(Ⅲ)炸药的临界速度。根据冲击起爆理论和飞片临界起爆速度,计算出JO-9C(Ⅲ)炸药内入射冲击波的波阵面参量,再结合
为了准确评估水下爆炸冲击波对平板结构造成的毁伤效果,提出以有效冲量作为毁伤准则的威力参量类别,并给出了考虑球面波斜入射效应的平板结构有效冲量计算方法。新准则通过动量守恒方程计算得到的平板结构实际获得冲量对比毁伤效果,表现为冲击波峰压、时间常数以及板结构特征参数的联合形式。借助数值模拟与文献数据,对比分析了准则的准确度和适用性。结果表明:相对于冲击波峰压、比冲量、能流密度等单一威力参量,新毁伤准则在评估平板结构的毁伤程度时误差更小;在对比不同炸药毁伤威力以及预估未知工况毁伤效果两种应用场景中,新准则的相对误差均在10%以内。新提出的毁伤准则用于对比和评估水下爆炸冲击波对板结构的毁伤效果时具有良好的通用性。
为探究施加约束对陶瓷破碎位移规律和陶瓷复合装甲抗侵彻性能的影响,采用光滑粒子流体动力学-有限元法(SPH-FEM)对柱状弹侵彻陶瓷/钢复合靶板进行了数值模拟,根据陶瓷复合装甲的破坏响应特性和弹体运动、受力变化,对侵彻过程进行了阶段划分,并在此基础上分析了自约束、侧向约束、面板约束3种约束方式对陶瓷破碎位移的影响,并对靶板防护性能进行了改进。结果表明:通过施加约束限制陶瓷锥的位移是充分发挥陶瓷复合装甲防护能力的关键,施加3种约束方式均能够减小破碎陶瓷的横向位移或纵向位移,从而在一定范围内有效提升陶瓷复合靶板的抗侵彻能力。
基于爆炸驱动金属半球壳产生的破片速度分布特点,设计了聚氨酯泡沫/水/聚氨酯泡沫3层介质组合的破片全回收系统。聚氨酯泡沫桶由侧壁与底部一次成型的3个泡沫桶组件拼接,结构紧凑,防水性能高。在泡沫桶底部盛水并增加一定厚度的漂浮泡沫板,加强了回收池底部防护。采用该泡沫桶开展了中心点起爆驱动45钢半球壳膨胀断裂的全回收实验。实验结果表明,破片回收率超过88%,破片内外表面辨识度高,绝大多数破片穿透泡沫桶侧壁和漂浮泡沫板并沉入水底。漂浮泡沫板和底部水层对破片速度的衰减效果明显,泡沫桶底部无破片侵彻。新设计的回收系统可回收接近2π立体角的飞散破片,表明该回收系统的适用范围涵盖了实验装置在起爆点单边的爆轰实验,拓展了该回收池可回收的破片种类。此外,新系统将竖直方向的组合衰减层总尺寸减至70 cm,为进一步优化和减小回收池尺寸提供了依据。根据破片测量数据,给出了破片质量分布结果,以及回收破片的平均厚度、平均尺寸等相关信息,并简要分析了半球壳破片与柱壳破片的特征差异,继而推算出半球壳断裂应变明显小于柱壳的断裂应变,为不同应力状态的壳层膨胀断裂机制研究提供了有益的实验数据支撑。
为保证新建车站密贴下穿服役近50年车站改扩建施工的安全稳定,开展了运营和预留车站的状态评估,依据结构状态制定了施工变形控制标准,借助数值模拟对比了不同扩建施工方案的影响,并结合现场实施验证了优选方案的效果。结果表明:先期建成车站结构存在装饰层掉落、混凝土开裂、剥落、碳化、钢筋腐蚀、底板渗漏水、区间积水及变形缝不均匀沉降等问题;交叉中隔壁法(central cross diagram,CRD)方案中预留3号线车站的最大沉降量为2.2 mm,地表沉降1.7 mm;洞桩法(pile beam arch,PBA)方案中车站的最大沉降量为1.3 mm,地表沉降1.1 mm。综合考虑多种因素后,推荐在该改扩建工程中采用PBA施工方案。现场采用PBA施工方案后,2、3号线车站结构的最大竖向变形分别为−1.28和−1.01 mm,监测指标均在安全阈值内。研究结果可为类似长期服役改扩建工程提供参考。