Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Display Method:
2021, 35(1): 0-0.  
2021, 35(1): 1-2.  
Outstanding Youths Commentary on High Pressure Science
As a thermodynamic parameter, independent of temperature and composition, pressure provides a new dimension for material science research and innovation. Pressure has become an important source for developing new concepts, creating new theories and exploring new materials. Here, some advances in optical properties regulation of low-dimensional materials under high pressure are summarized. By changing the exciton binding energy and the distortion behavior of halide octahedra under pressure, the luminescence of low-dimensional halide perovskites experienced a stark change from "0" to "1". Meanwhile, we innovatively put forward the new concept of "pressure-induced emission (PIE)". Through introducing the pressure effect, it is able to regulate the surface ligands of nanomaterials, change the interaction and energy level coupling between the surface ligands and CdSe quantum dots. This will promote the Hirshfeld charge transfer, thus realizing the significant emission enhancement of CdSe quantum dots by nearly one order of magnitude. With the help of high-pressure regulation on energy band structure, we successfully achieved the core/shell configuration transition of CdSe/CdS semiconductor nanocrystals from quasi-type Ⅱ to type Ⅰ core-shell structure. The above work will deepen the understanding of the structure-property relationship of luminescent materials under extreme compression conditions. The research results provide new methods for the design and preparation of low-dimensional materials with specific functionality.
Physical Property & Structure
Phase behaviors of α-quartz and coesite at high pressures and room temperature have been investigated by using diamond anvil cells combined with synchrotron X-ray diffraction. α-quartz undergoes a phase transition to a new phase at about 23 GPa, and the phase transition gets finished at about 44 GPa. The high-pressure phase of α-quartz can be observed up to 59 GPa. Coesite transforms to coesite-II at about 22 GPa, and coesite-II undergoes phase transitions above about 36 GPa. Crystalline phase can be observed up to 59 GPa in coesite. Different hydrostatic conditions provided by neon and argon have no crucial effect on high-pressure phase behaviors of α-quartz and coesite. These results not only clarify pressure-induced phase transition pathway of α-quartz and coesite, but also shed light on the transition mechanism of silica under high pressure.
As an important fluid medium in the upper mantle, carbonatite melt has stronger chemical and physical activity than silicate melt. The occurrence of a small amount of carbonatite melt in the upper mantle will significantly affect its many geophysical and geochemical properties, such as electrical conductivity and element composition. Experimental studies at elevated conditions are important approaches to understand the chemical and physical effects of carbonatite melt. The physical and chemical influences of carbonatite melt are closely related to its distribution and geometry in the system, and a key factor of them for the characterization is the dihedral angle. Available studies on the dihedral angle (and various physical effects) of carbonate melt are normally carried out at extremely high temperature exceeding about 1 200 ℃, and the potential problem is that the complex reactions between the melt and solid minerals is inevitable and the experiment is difficult under extreme high temperature. In this work, in order to overcome the problems, the reported dihedral angle distribution in the carbonatite-olivine system at low temperature not exceeding 700 ℃ was measured by a low melting pointing carbonatite mixture. The experiments were conducted at 1 GPa with an end-loaded piston cylinder apparatus, and the dihedral angle distribution in the recovered samples were carefully examined by scanning electron microscopy. The results demonstrate a homogeneous distribution of melt in the system, and the observed dihedral angles are mostly 10°−40°, with the average values of 24°−27°. Consequently, this carbonatite has greater ability in wetting grain boundaries, and provides a new analog for future studies on the behavior and geophysical properties of carbonatite melt inside the Earth.
Physical Property and Structure
In our work, a series of Cu/PMMA composites with different components were prepared using the melting blending method, in which particles are randomly dispersed in PMMA matrix without agglomeration. Then again study was conducted on the Cu particles content’s influence on the sound velocity and impact compression behavior of PMMA matrix. The ultrasonic test results show that with Cu particles content increasing, the sound wave attenuation makes a slow decreasing tendency of transversal and longitudinal sound velocities in material, which in turn decreases its bulk sound velocity. Based on the plate impact test, the shock wave velocity-particle velocity (D-u) equations of Cu/PMMA composites in the impact pressure range of 1.1–6.0 GPa were obtained. Owing to the increase of the acoustic impedance of Cu/PMMA composites, Hugoniot parameter shows an increase while the fitted zero-pressure sound velocity tends to decrease, which turns to be consistent with the variation of bulk sound velocity at atmospheric pressure. In addition, pressure-particle velocity (p-u) curves of the composites were discussed on the basis of the p-u model. And a reliable method was proposed to predict pressure-density (p-\begin{document}$\;\rho $\end{document}) relationship of polymer matrix composites filled with metal particles.
High Pressure Technology
Our work introduces a double-sided top ultra-high pressure die with a steel ring and a carbon fiber composite ring preloading together. Compared with the double-sided top die of the full steel ring, a layer of carbon fiber composite material ring instead of the outermost steel ring is used in this new structure, which overcomes the challenges of manufacturing and processing large-diameter steel rings and makes a new mutual pre-tightening method, in which steel rings and composite material rings are used to pre-tighten the cylinder. Based on the numerical analysis, the mold structure is proved feasible, and it is further indicated that this structure can reduce the circumferential stress, maximum shear stress and equivalent stress of the cylinder to a certain extent. In addition, the failure of the carbon fiber composite ring is also identified in this work.
Due to the machining challenge of high-quality cemented carbide, ultra-high pressure devices are always limited on scale. In our work, a new type of wire wound and split ultra-high pressure die with two-anvil was proposed to try to overcome this limitation. The die is mainly composed of internal split cylinder and external prestressed steel wire. On the basis of the mechanical modeling and via the finite element software, the equal tension winding die was analyzed and the split pressure die as well as steel wire winding layer were studied. The results show that the maximum equivalent stress appears on the inner wall of the pressure die cavity after loading; the dimensional stability of pressure die cavity is proportional to the number of layers of wire winding and the diameter of the wire. The axial stress of the wire in the winding layer is inversely proportional to the diameter of the wire but proportional to the number of layers of the wire.
Dynamic Response of Materials
To better understand crack generation laws and failure modes of various rocks compressed under different strain rates, specimens made from limestone and red sandstone were respectively prepared and their crack formation under different strain rates and stress modes was investigated in both quasi-static and dynamic compression tests. High-speed photography was used to record cracks occurrence as well as failure modes. By analyzing the rocks’ physical properties, stress state, and energy evolution in comparison, reasons for the crack morphology variation in compression under different strain rates were obtained. It is shown that: (1) the failure modes of rock specimens under compression in the quasi-static range vary with strain rates, and the compressive strength of rock specimens are significantly effected by different failure modes; (2) the magnitude of incident energy determines the fluctuation of the dynamic compressive strength curve of the rock sample; (3) under dynamic compression, the circumferential growth rate of crack is positively correlated with the compressive strength of rock.
In order to study the mechanical properties of granite under different unloading confining pressure rates, tests for the granite unloading confining pressure stress path under constant axial pressure were conducted via RMT-150B rock mechanics test system. The results show that: under the same initial confining pressure, the ductility of rock sample gets decreased with the increase of unloading confining pressure rate, which is characterized by brittle failure. The higher the unloading confining pressure rate is, the greater the strain rate is in the duration of confining pressure unloading, but the total deformation keeps small. Under the same unloading rate, the higher the initial confining pressure is, the greater the strain rate as well as the total deformation is. Then using Mogi-Coulomb intensity criterion to fit the test results, it is concluded that the unloading confining pressure rate degrades the cohesion of granite and strengthens the internal friction angle of rock; the smaller the unloading confining pressure rate is, the longer the active period of ringing count is, indicating a slow but complete development of the internal damage in granite samples under low confining pressure release rate.
The mechanical properties of G50 steel and G31 steel under quasi-static, dynamic and detonation loading conditions are compared by tensile test, impact test, Hopkinson bar test and detonation loading test. The results show that the mechanical performances of G50 steel and G31 steel under static and 103 s−1 strain rate conditions are similar. The G50 steel and G31 steel exhibit similar failure morphology after detonation loading test, indicating that the two materials have similar tensile strength and yield strength under ultra-high pressure and ultra-high strain rate condition. The test results show that G31 steel can apply in the shell of penetrating the warhead.
In this study, axial compression experiments of 99 alumina ceramics at different strain rates were carried out. After soft recovering of the fragments at the corresponding strain rates, and geometrical characterization of the specimen fragments by the sieve residue method, the fragment size distribution curves at different strain rates as well as the energy absorption process in the failure of the specimen were obtained, and the relationship between the external force of the granular ceramic and the relative crushing rate was also established. Digital image correlation (DIC) technology is used to obtain the strain field along the loading direction at different strain rates, and the failure mode is analyzed in combination with the energy absorption process and fragment grading performance. The results show that the fracture strength of 99 alumina ceramics is positively correlated with the strain rate. At the middle strain rate, the energy absorption rate has a negative correlation with the strain rate. Due to the change of the energy absorption mechanism, the sample was fractured at the beginning, but the failure mode became split-crushing mixed failure when the strain rate reached 401 s−1. With the strain rate increasing, the specimen became crushed and damaged. The average particle size decreases, the size of the fragments converges, and the influence of stress concentration gradually weakens. The relationship among energy, destruction process and fragment distribution was analyzed, and finally the fragment distribution law and fragmentation characteristics were obtained.
In this work, a numerical simulation was performed on the dynamic response process of the prestressed reinforced concrete (PC) box-girder bridge under implosion load via three-stage continuous coupling finite element method. Taking gravity and prestress into account, the damage mode of PC box-girder bridge was obtained. Besides, the failure mechanism was analyzed. It is shown that the PC box-girder bridge’s physical process from partial destruction to overall collapse can be theoretically reproduced by the three-stage continuous coupled finite element method. At initial stress stage, the stress of the PC box-girder bridge meets the requirement of the actual project. At local response stage, cracks occur at the connection between the web and the roof, and a break around the top and bottom flanges comes into being in the center. At overall response stage, influenced by the gravity and prestress, the box-girder bridge first arches up, then collapses and finally makes a bending failure.
Boundary condition exerts great influence on the failure mode of square plate under intensive loading. In this paper, a series of experiments of clamped square plates with different boundary chamfer radius were performed in the drop hammer impacting machine, in which the drop hammer was specially designed nearly same as the square plate in dimension and the supporting framework could offer various boundary conditions. The results show that: (1) the failure mode of large plastic deformation, one-side tearing and double-side tearing can be observed, and the square plates are more easily damaged under smaller boundary chamfer radius. (2) The boundary chamfer radius has a minor effect on the plate center displacement and deformation profile, but a major influence on the boundary tearing length and crack forming process. (3) The shear effect on the boundary region of clamped square plate would decrease with increasing boundary chamfer radius, and it is more easier for the plate with smaller boundary chamfer radius to get torn under the same intense impulsive loading. The critical failure strain of square plate is among [0.191, 0.241].
High Pressure Applications
To improve the energy output efficiency of composite warhead, a HEAT-HE composite warhead is presented, which can release explosively formed penetrator, prefabricated fragments and natural fragments. With the numerical simulation software LS-DYNA, we analyzed how the initial detonation mode (including location, diameter and number of detonation points) affects the damage elements formation and energy output. Besides, a possible technical approach for the tunable damage-power warhead was also discussed. The results shows that: (1) When the donation points are wider and further away from the linear, the linear-formed damage element would get a higher tip velocity and a greater tip-tail velocity and length-diameter ratios. The greatest gain of velocity can reach up to 50% so as to lead the transformation from explosively formed projectile (EFP) to jetting projectile charge (JPC). (2) When the detonation points are located on the central axis of the charge, the damage element forming keeps only related to the point closest from the liner. (3) For the prefabricated fragment, the detonation velocity on the 60 mm charge height (P2) is the highest. Its maximum velocity can get increased with the increasing detonation points with wider diameter, while its minimum velocity always keeps about 600 m/s with little variation. For the natural fragment formed by the shell, there isn’t an obvious variation of the average velocity, but a reasonable approach to detonate can make the fragments more homogeneous and benefit the adjustment of the fragments mass distribution. Therefore, it is feasible to make a tunable damage-power warhead by controlling the initiation detonation mode, but further research into the effects of the initiation mode on the fragment velocity is needed as well.
There is a possibility of gas leakage during the operation of gas distribution stations. The flammable gas mixture generated by the leaked gases may result in explosion accident and bring about great hazards to the public safety. Based on geographic information system (GIS) technology, the geometric model of urban block around a gas distribution station in Nanjing was established and imported in the CFD software FLACS to simulate the gas cloud explosion. The development process and overpressure distribution of gas cloud explosion around the gas distribution station under typical working conditions were revealed. The influences of gas cloud size, ignition position and gas cloud position on the explosion overpressure were discussed. In addition, the damage level of the gas cloud explosion was discussed based on the numerical predictions. The results show that the application of GIS technology can improve the accuracy and efficiency of the model significantly. When the size of gas cloud is larger than 60 m and with obvious restrictions or obstacles in the ignition position, gas deflagration may occur. When the gas cloud is located on the southwest side of the gasholder, the explosion will cause a wide range of minor injuries (damage) to people (buildings), and cause a certain range of serious injuries (damage) to people (buildings). In order to avoid the serious consequences of gas cloud explosion, the existence of tall and dense buildings near the gas distribution station should be avoided.
Explosion venting accidents in underground comprehensive pipe corridors occur from time to time, causing huge losses to ground personnel and property. Based on a pilot project of an underground comprehensive pipe gallery in Chongqing and the material point method, a high-energy combustion model is used to simulate the process of leaking methane gas explosive’s impact on the structure and surrounding rock of the pipe gallery. Through the simulation, the response characteristics of ground pressure and displacement are studied. The results show that: under the effect of explosion, secondary stress waves caused by reflection and refraction of the contact surface will appear in the pipe gallery and surrounding rock. In the transverse direction, the amplitude of the secondary wave increases with the increase of the horizontal distance from the initiation point, while that generated in the longitudinal direction keeps smaller, and the change remains small with the increasing distance. The explosion caused the overall ground subsidence, but the ground bulged near the center of the detonation point. This bulge was composed of a violent bulge formed by the pipe gallery lining broken and gas directly impacting the rock and soil, and a slight bulge formed by the overall vibration of the pipe gallery.
The surface mounted devices (SMD) crystal oscillator is widely used in various electrical and communication equipment or systems. The crystal oscillator is prone to structural damage under shock environment, which may results in abnormal operation of the system. The relationship between the level of structural stress response and the value of related shock response spectrum (SRS) is established and a more reasonable damage boundary form is obtained by analyzing the response characteristics of the single-degree-of-freedom (SDOF) system under shock loads with different frequencies. Based on the mechanical characteristics of the vulnerable component of a typical crystal oscillator, the corresponding simplified analytical model is established, and its structural damage boundary in a large frequency range is obtained. The finite element simulation software is used to simulate the response of crystal oscillator structure under shock loads within the frequency range of 0.5–30 kHz to verify the effectiveness of the structural damage boundary. This paper also provides a feasible method for the reliability study of various micro-components represented by SMD crystal oscillator under shock environment.
In order to improve melt-casting charge quality of the warhead with a large length-diameter ratio, a three-dimensional charge model was established by means of the finite element simulation method, and numerical simulation on the melt-casting charge process was carried out, including traditional casting and hot mandrel process casting. Then combined with the shrinkage principle and mechanism of the traditional hot mandrel process to improve charge quality, a multi-layered hot mandrel with optimized temperature controlling was proposed and its casting process simulation was undertaken to predict how it exerts effects on the charge quality. The results show that the radial solidification order of the grains can’t be changed and shrinkage as well as porosity would appear at the wider area of the explosive room in the traditional hot mandrel casting process. However, the defects of shrinkage and porosity can be avoided by changing the radial solidification order in the improved hot mandrel process, which just corresponds to our expectation.
Experimental Study of the Effect of Shear Stress on Phase Transition in c-Axis CdS Single Crystal under Dynamic Loading
TANG Zhi-Ping, Gupta Y M
1989, 3(4): 290-297 .   doi: 10.11858/gywlxb.1989.04.005
Abstract(9664) PDF(864)
Flattening of Cylindrical Shells under External Uniform Pressure at Creep
Shesterikov S A, Lokochtchenko A M
1992, 6(4): 247-253 .   doi: 10.11858/gywlxb.1992.04.002
Abstract(5707) PDF(622)
The Generation of 90 GPa Quasi-Hydrostatic Pressures and the Measurements of Pressure Distribution
LIU Zhen-Xian, CUI Qi-Liang, ZOU Guang-Tian
1989, 3(4): 284-289 .   doi: 10.11858/gywlxb.1989.04.004
Abstract(10696) PDF(1038)
A Study on Calculation of the Linear Thermal Expansion Coefficients of Metals
ZHENG Wei-Tao, DING Tao, ZHONG Feng-Lan, ZHANG Jian-Min, ZHANG Rui-Lin
1994, 8(4): 302-305 .   doi: 10.11858/gywlxb.1994.04.010
Abstract(11847) PDF(697)
Development of Large Volume-High Static Pressure Techniques Based on the Hinge-Type Cubic Presses
WANG Hai-Kuo, HE Duan-Wei, XU Chao, GUAN Jun-Wei, WANG Wen-Dan, KOU Zi-Li, PENG Fang
2013, 27(5): 633-661.   doi: 10.11858/gywlxb.2013.05.001
Abstract(9859) PDF(583)
Research on Deformation Shape of Deformable Warhead
GONG Bai-Lin, LU Fang-Yun, LI Xiang-Yu
2010, 24(2): 102-106 .   doi: 10.11858/gywlxb.2010.02.004
Abstract(4722) PDF(118)
The Failure Strength Parameters of HJC and RHT Concrete Constitutive Models
ZHANG Ruo-Qi, DING Yu-Qing, TANG Wen-Hui, RAN Xian-Wen
2011, 25(1): 15-22 .   doi: 10.11858/gywlxb.2011.01.003
Abstract(12823) PDF(567)
Experiment and Numerical Simulation of Cylindrical Explosive Isostatic Pressing
CHEN Lang, LU Jian-Ying, ZHANG Ming, HAN Chao, FENG Chang-Gen
2008, 22(2): 113-117 .   doi: 10.11858/gywlxb.2008.02.001
Abstract(10042) PDF(469)
Modification of Tuler-Butcher Model with Damage Influence
JIANG Dong, LI Yong-Chi, GUO Yang
2009, 23(4): 271-276 .   doi: 10.11858/gywlxb.2009.04.006
Abstract(7117) PDF(345)
Long-Distance Flight Performances of Spherical Fragments
TAN Duo-Wang, WEN Dian-Ying, ZHANG Zhong-Bin, YU Chuan, XIE Pan-Hai
2002, 16(4): 271-275 .   doi: 10.11858/gywlxb.2002.04.006
Abstract(10013) PDF(469)
Design of the Sample Assembly for Ultrasonic Measurement at High Pressure and 300 K in Six-Side Anvil Cell
WANG Qing-Song, WANG Zhi-Gang, BI Yan
2006, 20(3): 331-336 .   doi: 10.11858/gywlxb.2006.03.019
Abstract(6662) PDF(332)
Factors Analysis of Debris Cloud's Shape of Hypervelocity Impact
TANG Mi, BAI Jing-Song, LI Ping, ZHANG Zhan-Ji
2007, 21(4): 425-432 .   doi: 10.11858/gywlxb.2007.04.016
Abstract(9478) PDF(427)
Numerical Simulation of the Interactions between Hyperpressure Waterjet and Explosive
HE Yuan-Hang, LI Hai-Jun, ZHANG Qing-Ming
2005, 19(2): 169-173 .   doi: 10.11858/gywlxb.2005.02.012
Abstract(10033) PDF(442)
Chemical Synthesis and Characterization of Flaky h-CN by HPHT
YANG Da-Peng, LI Ying-Ai, DU Yong-Hui, SU Zuo-Peng, JI Xiao-Rui, YANG Xu-Xin, GONG Xi-Liang, ZHANG Tie-Chen
2007, 21(3): 295-298 .   doi: 10.11858/gywlxb.2007.03.013
Abstract(10575) PDF(493)
Experimental Study on the Damage Effect of Compound Reactive Fragment Penetrating Diesel Oil Tank
XIE Chang-You, JIANG Jian-Wei, SHUAI Jun-Feng, MEN Jian-Bing, WANG Shu-You
2009, 23(6): 447-452 .   doi: 10.11858/gywlxb.2009.06.008
Abstract(8248) PDF(541)
A Study of the Intensity High Density Polyethylene at Static High Pressure
YANG Guang-Qun, WANG Hui, WU Rui-Qi
1992, 6(3): 230-234 .   doi: 10.11858/gywlxb.1992.03.012
Abstract(7392) PDF(680)
Theoretical Study on High Pressure Liquid Sintering of Polycrystalline Diamond Compact
DENG Fu-Ming, ZHAO Guo-Gang, WANG Zhen-Ting, GUO Gang, LIU Xiao-Hui, CHEN Qi-Wu
2004, 18(3): 252-260 .   doi: 10.11858/gywlxb.2004.03.010
Abstract(7478) PDF(286)
Design and Temperature Calibration for Heater Cell of Split-Sphere High Pressure Apparatus Based on the Hinge-Type Cubic-Anvil Press
CHEN Xiao-Fang, HE Duan-Wei, WANG Fu-Long, ZHANG Jian, LI Yong-Jun, FANG Lei-Ming, LEI Li, KOU Zi-Li
2009, 23(2): 98-104 .   doi: 10.11858/gywlxb.2009.02.004
Abstract(10529) PDF(465)
Detonation Shock Dynamics Calibration of JB-9014 Explosive at Ambient Temperature
TAN Duo-Wang, FANG Qing, ZHANG Guang-Sheng, HE Zhi
2009, 23(3): 161-166 .   doi: 10.11858/gywlxb.2009.03.001
Abstract(10264) PDF(517)
Synchrotron Radiation Diffraction of Enstatite under High Temperature and High Pressure
MA Yan-Mei, ZHOU Qiang, YANG Kai-Feng, LI Xue-Fei, SHEN Long-Hai, CUI Qi-Liang, LIU Jing, ZOU Guang-Tian
2006, 20(1): 11-14 .   doi: 10.11858/gywlxb.2006.01.003
Abstract(6464) PDF(311)
Phase Evolution of Zr-Based Bulk Metallic Glass Prepared by Shock-Wave Quenching under High Temperature and High Pressure
YANG Chao, CHEN Wei-Ping, ZHAN Zai-Ji, JIANG Jian-Zhong
2007, 21(3): 283-288 .   doi: 10.11858/gywlxb.2007.03.011
Abstract(10008) PDF(458)
Explosive Shock Synthesis of Wurtzite Type Boron Nitride
TAN Hua, HAN Jun-Wan, WANG Xiao-Jiang, SU Lin-Xiang, LIU Li, LIU Jiang, CUI Ling
1991, 5(4): 241-253 .   doi: 10.11858/gywlxb.1991.04.001
Abstract(6999) PDF(632)
Recent Progresses in Some Fields of High-Pressure Physics Relevant to Earth Sciences Achieved by Chinese Scientists
LIU Xi, DAI Li-Dong, DENG Li-Wei, FAN Da-Wei, LIU Qiong, NI Huai-Wei, SUN Qiang, WU Xiang, YANG Xiao-Zhi, ZHAI Shuang-Meng, ZHANG Bao-Hua, ZHANG Li, LI He-Ping
2017, 31(6): 657-681.   doi: 10.11858/gywlxb.2017.06.001
Abstract(5569) HTML(2571) PDF(2571)
Application Research on JWL Equation of State of Detonation Products
ZHAO Zheng, TAO Gang, DU Chang-Xing
2009, 23(4): 277-282 .   doi: 10.11858/gywlxb.2009.04.007
Abstract(11076) PDF(522)
Failure Modes of Ductile Metal Plates under Normal Impact by Flat-Ended Projectiles
PAN Jian-Hua, WEN He-Ming
2007, 21(2): 157-164 .   doi: 10.11858/gywlxb.2007.02.007
Abstract(9988) PDF(529)
Effects of Liner Curvature Radius on Formation of Double-Layered Spherical Segment Charge Liner into Tandem Explosively Formed Projectile (EFP)
ZHENG Yu, WANG Xiao-Ming, LI Wen-Bin, LI Wei-Bing
2009, 23(3): 229-235 .   doi: 10.11858/gywlxb.2009.03.011
Abstract(10761) PDF(441)
Comment on the Pressure Gauge for the Experiments at High Temperature and High Pressure with DAC
ZHENG Hai-Fei, SUN Qiang, ZHAO Jin, DUAN Ti-Yu
2004, 18(1): 78-82 .   doi: 10.11858/gywlxb.2004.01.014
Abstract(10187) PDF(620)
Activities of Antioxidative Enzymes and the Responds to Cold Stress of Rice Treated by High Hydrostatic Pressure
BAI Cheng-Ke, LI Gui-Shuang, DUAN Jun, PENG Chang-Lian, WENG Ke-Nan, XU Shi-Ping
2005, 19(3): 235-240 .   doi: 10.11858/gywlxb.2005.03.008
Abstract(9857) PDF(453)
The Launching Technique of Hypervelocity Projectiles in Two-Stage Light Gas Gun
WANG Jin-Gui
1992, 6(4): 264-272 .   doi: 10.11858/gywlxb.1992.04.004
Abstract(12428) PDF(870)
An Elastic/Viscoplastic Pore Collapse Model of Double-Layered Hollow Sphere for Hot-Spot Ignition in Shocked Explosives
WEN Li-Jing, DUAN Zhuo-Ping, ZHANG Zhen-Yu, OU Zhuo-Cheng, HUANG Feng-Lei
2011, 25(6): 493-500.   doi: 10.11858/gywlxb.2011.06.003
Abstract(6653) PDF(223)
Discussions on the VLW Equation of State
LONG Xin-Ping, HE Bi, JIANG Xiao-Hua, WU Xiong
2003, 17(4): 247-254 .   doi: 10.11858/gywlxb.2003.04.002
Abstract(10073) PDF(536)
Numerical Simulation of Hypervelocity Launch of Flier Plate with Gradual Change Impedance
CHEN Lang, LIU Qun, LU Jian-Ying, GONG Zi-Zheng, GUO Xin-Wei
2009, 23(3): 167-172 .   doi: 10.11858/gywlxb.2009.03.002
Abstract(10147) PDF(476)
The Constitutive Relationship between High Pressure-High Strain Rate and Low Pressure-High Strain Rate Experiment
CHEN Da-Nian, LIU Guo-Qing, YU Yu-Ying, WANG Huan-Ran, XIE Shu-Gang
2005, 19(3): 193-200 .   doi: 10.11858/gywlxb.2005.03.001
Abstract(6703) PDF(405)
Analysis of Equivalence for Structural Response Induced by Pulsed X-Ray with Other Analogue Sources
PENG Chang-Xian
2002, 16(2): 105-110 .   doi: 10.11858/gywlxb.2002.02.004
Abstract(9938) PDF(510)
Studies on the Distribution of Breakdown Liquid Particle Size under Explosive Detonation
HU Dong, HAN Zhao-Yuan, ZHANG Shou-Qi, ZHAO Yu-Hua, WANG Bing-Ren, CHEN Jun, SUN Zhu-Mei, CAI Qing-Jun, YAO Jiu-Cheng, DONG Shi
2008, 22(1): 6-10 .   doi: 10.11858/gywlxb.2008.01.002
Abstract(11561) PDF(446)
Comments on the Unjustification of CJ and ZND Model in Detonation
HU Shao-Ming, LI Chen-Fang
2003, 17(3): 214-219 .   doi: 10.11858/gywlxb.2003.03.010
Abstract(6554) PDF(491)
Experimental Studies on Air Drag Coefficient of Spherical Tungsten Fragments
TAN Duo-Wang, WANG Guang-Jun, GONG Yan-Qing, GAO Ning
2007, 21(3): 231-236 .   doi: 10.11858/gywlxb.2007.03.002
Abstract(10164) PDF(564)
Shock Wave Physics: The Coming Challenges and Exciting Opportunities in the New Century-Introduction of the 12th International Conference of Shock Compression of Condensed Matter (SCCM-2001)
GONG Zi-Zheng
2002, 16(2): 152-160 .   doi: 10.11858/gywlxb.2002.02.012
Abstract(10033) PDF(517)
Confined Pressure Calibration for 3 GPa Molten Salt Medium Triaxial Pressure Vessel under High Pressure and Temperature
HAN Liang, ZHOU Yong-Sheng, HE Chang-Rong, YAO Wen-Ming, LIU Gui, LIU Zhao-Xing, DANG Jia-Xiang
2011, 25(3): 213-220 .   doi: 10.11858/gywlxb.2011.03.004
Abstract(6576) PDF(236)
Effect of Boron Contained in the Catalyst on Thermal Stability of Boron-Doped Diamond Single Crystals
WANG Mei, LI He-Sheng, LI Mu-Sen, GONG Jian-Hong, TIAN Bin
2008, 22(2): 215-219 .   doi: 10.11858/gywlxb.2008.02.017
Abstract(9854) PDF(442)
Perimeter-Area Relation of Fractal Island
1990, 4(4): 259-262 .   doi: 10.11858/gywlxb.1990.04.004
Abstract(10414) PDF(890)
Investigation of in Situ Raman Spectrum and Electrical Conductivity of PbMoO4 at High Pressure
YU Cui-Ling, YU Qing-Jiang, GAO Chun-Xiao, LIU Bao, HE Chun-Yuan, HUANG Xiao-Wei, HAO Ai-Min, ZHANG Dong-Mei, CUI Xiao-Yan, LIU Cai-Long, et al.
2007, 21(3): 259-263 .   doi: 10.11858/gywlxb.2007.03.007
Abstract(10034) PDF(533)
Two-Dimensional Numerical Simulation of Explosion for Premixed CH4-O2-N2 Mixture
LI Cheng-Bing, WU Guo-Dong, JING Fu-Qian
2009, 23(5): 367-376 .   doi: 10.11858/gywlxb.2009.05.008
Abstract(9826) PDF(490)
A Kind of Anodized Aluminium Shock Wave Detectors
SUN Yue, YUAN Chang-Ying, ZHANG Xiu-Lu, WU Guo-Dong
2004, 18(2): 157-162 .   doi: 10.11858/gywlxb.2004.02.011
Abstract(10325) PDF(393)
Experimental Validation of Quasi-Elastic Response of Metal during Reloading Process
SONG Ping, ZHOU Xian-Ming, YUAN Shuai, LI Jia-Bo, WANG Xiao-Song
2007, 21(3): 327-331 .   doi: 10.11858/gywlxb.2007.03.019
Abstract(9826) PDF(496)
Synchrotron Radiation Diffraction of Gallium Oxide under High Pressure
CUI Qi-Liang, TU Bao-Zhao, PAN Yue-Wu, WANG Cheng-Xin, GAO Chun-Xiao, ZHANG Jian, LIU Jing, ZOU Guang-Tian
2002, 16(2): 81-84 .   doi: 10.11858/gywlxb.2002.02.001
Abstract(9846) PDF(605)
Expressions of Cold Specific Energy and Cold Pressure for Detonation Products
LI Yin-Cheng
2005, 19(1): 71-79 .   doi: 10.11858/gywlxb.2005.01.013
Abstract(9829) PDF(439)
Theoretical Research on Temperature Dependence of the Specific Heat at Constant Volume for Liquid Metals
TANG Wen-Hui
1997, 11(1): 32-38 .   doi: 10.11858/gywlxb.1997.01.006
Abstract(6231) PDF(228)
Evaluation for Uncertainty of Particle Velocity in Hugoniot Measurements
DAI Cheng-Da, WANG Xiang, TAN Hua
2005, 19(2): 113-119 .   doi: 10.11858/gywlxb.2005.02.003
Abstract(10166) PDF(439)
Temperature Calibration for 3 GPa Molten Salt Medium Triaxial Pressure Vessel
HAN Liang, ZHOU Yong-Sheng, DANG Jia-Xiang, HE Chang-Rong, YAO Wen-Ming
2009, 23(6): 407-414 .   doi: 10.11858/gywlxb.2009.06.002
Abstract(5968) PDF(238)
Application of PVDF for Thermal Shock Wave Measurement in Materials Radiated by Electron Beam
PENG Chang-Xian, LIN Peng, TAN Hong-Mei, TANG Yu-Zhi, LIU Xiao-Ling
2002, 16(1): 7-16 .   doi: 10.11858/gywlxb.2002.01.002
Abstract(4334) PDF(103)
Phase Transformation Mechanism of Single Crystal Iron from MD Simulation
CUI Xin-Lin, ZHU Wen-Jun, HE Hong-Liang, DENG Xiao-Liang, LI Ying-Jun
2007, 21(4): 433-438 .   doi: 10.11858/gywlxb.2007.04.017
Abstract(9686) PDF(469)
Experimental Research on Compression Mechanical Properties of Ta-10W
ZHONG Wei-Zhou, SONG Shun-Cheng, XIE Ruo-Ze, HUANG Xi-Cheng
2010, 24(1): 49-54 .   doi: 10.11858/gywlxb.2010.01.009
Abstract(6783) PDF(327)
Structure and Ferroelectric Properties of Dense Nanocrystalline BaTiO3 Ceramics Prepared by High Pressure Sintering Method
LI Peng-Fei, JIN Chang-Qing, XIAO Chang-Jiang, PAN Li-Qing, WANG Xiao-Hui
2007, 21(3): 249-252 .   doi: 10.11858/gywlxb.2007.03.005
Abstract(9925) PDF(424)
Isothermal Equations of State of Au and Pt at Room Temperature: Implication for Pressure Scales
JIN Ke, WU Qiang, LI Xin-Zhu, CAI Ling-Cang, JING Fu-Qian
2009, 23(3): 181-188 .   doi: 10.11858/gywlxb.2009.03.004
Abstract(9988) PDF(438)
In-Situ High-Pressure X-Ray Diffraction of Natural Beryl
QIN Shan, LIU Jing, LI Hai-Jian, ZHU Xiang-Ping, LI Xiao-Dong
2008, 22(1): 1-5 .   doi: 10.11858/gywlxb.2008.01.001
Abstract(10510) PDF(484)
Study on Stress in Chemical Vapor Deposite (CVD) Diamond Films
TANG Bi-Yu, Jin Jiu-Cheng, LI Shao-Lü, ZHOU Ling-Ping, CHEN Zong-Zhang
1997, 11(1): 56-60 .   doi: 10.11858/gywlxb.1997.01.010
Abstract(6017) PDF(220)
Possible Existence of Ultra Fast Polarity Diffusion Process of ZnO under High Pressure
ZHAN Xiao-Hong, CAO Da-Hu, LU Zhong, DING Hui-Hui
2008, 22(1): 85-88 .   doi: 10.11858/gywlxb.2008.01.018
Abstract(6289) PDF(247)
Compressional Velocity and Attenuation in Amphibolite at 2.0 GPa and up to 1 200 ℃
YUE Lan-Xiu, XIE Hong-Sen, LIU Cong-Qiang, WU Feng-Chang
2002, 16(3): 176-182 .   doi: 10.11858/gywlxb.2002.03.003
Abstract(6271) PDF(246)
Research on Raman Spectra of Calcite at Pressure of 0.1~800 MPa
2003, 17(3): 226-229 .   doi: 10.11858/gywlxb.2003.03.012
Abstract(6774) PDF(341)
Pressure Effect on Rheological Properties of Food Gum Solutions
LI Bian-Sheng, ZENG Qing-Xiao, RUI Han-Ming, LIU Tong-Xun, CHEN Zhong, RUAN Zheng
2001, 15(1): 64-69 .   doi: 10.11858/gywlxb.2001.01.010
Abstract(6006) PDF(235)
Response of Homemade PVDF Piezofilm under Shock Loading and Unloading
LI Yan, ZHANG Xiang-Rong, TAN Hong-Mei, LIU Xiao-Ling, PEI Ming-Jing
2004, 18(3): 261-266 .   doi: 10.11858/gywlxb.2004.03.011
Abstract(10848) PDF(619)
Study on the Pressure-Induced Phase Transition of g-C3N4
LI Xue-Fei, MA Yan-Mei, SHEN Long-Hai, ZHANG Jian, LEI Wei-Wei, LIU Wei, ZOU Guang-Tian
2010, 24(1): 67-70 .   doi: 10.11858/gywlxb.2010.01.012
Abstract(4763) PDF(264)
Shock-Activating and Sintering of Hydroxyapatite Agglomerate
LIAO Qi-Long, YANG Shi-Yuan, CAI Ling-Cang, ZHENG Chang-Qiong
2003, 17(3): 209-213 .   doi: 10.11858/gywlxb.2003.03.009
Abstract(9796) PDF(631)
Equation of state of detonation products for PETN explosive
ZHAO Yan-Hong, LIU Hai-Feng, ZHANG Gong-Mu
2009, 23(2): 143-149 .   doi: 10.11858/gywlxb.2009.02.011
Abstract(9985) PDF(448)
Effect of Pressure on Carbon Concentration in C-H-O Supercritical-Fluid
ZHAO Xian-Feng, HONG Shi-Ming, LIU Fu-Sheng
2003, 17(2): 101-105 .   doi: 10.11858/gywlxb.2003.02.004
Abstract(10279) PDF(406)
Scaling Theory and Fractal Geometry
DONG Lian-Ke, Lü Guo-Hao, WANG Ke-Gang, WANG Xiao-Wei
1990, 4(3): 187-193 .   doi: 10.11858/gywlxb.1990.03.004
Abstract(5318) PDF(223)
Long-Time Correlation Effects and Fractal Braonian Motion
WANG Ke-Gang, LONG Qi-Wei
1991, 5(1): 52-56 .   doi: 10.11858/gywlxb.1991.01.008
Abstract(10597) PDF(903)
Numerical Simulation of Debris Cloud Produced by Hypervelocity Impact of Projectile on Bumper
ZHANG Wei, PANG Bao-Jun, JIA Bin, QU Yan-Zhe
2004, 18(1): 47-52 .   doi: 10.11858/gywlxb.2004.01.009
Abstract(6290) PDF(324)
High Pressure Study on Wollastonite
YANG Jing-Hai, YAO Bin, LIU Hong-Jian, GENG Yi-Zhi, SU Wen-Hui, ZHANG Ju-Yuan
1994, 8(3): 237-240 .   doi: 10.11858/gywlxb.1994.03.013
Abstract(5219) PDF(151)
An Approximate Relation between Cubical Thermal Expansion Coefficient of Solid and Pressure
YAN Zu-Tong
2000, 14(4): 253-256 .   doi: 10.11858/gywlxb.2000.04.003
Abstract(11113) PDF(837)
Research on Using Raman Spectra of Carborundum Anvil as Pressure Sensor at Pressure of 0.1~3 000 MPa
QU Qing-Ming, ZHENG Hai-Fei
2007, 21(3): 332-336 .   doi: 10.11858/gywlxb.2007.03.020
Abstract(10008) PDF(506)
Study on the Technique of Electric Gun Loading for One Dimensionally Planar Strain
WANG Gui-Ji, ZHAO Jian-Heng, TANG Xiao-Song, TAN Fu-Li, WU Gang, LIU Hai-Tao, KUANG Xue-Wu
2005, 19(3): 269-274 .   doi: 10.11858/gywlxb.2005.03.013
Abstract(9747) PDF(483)
Shock Wave Crystallization of Amorphous Alloys FeSiB, FeMoSiB and FeCuNbSiB
ZHAO He-Yun, KAN Jia-De, WANG Hai, LIU Zuo-Quan
2002, 16(2): 131-136 .   doi: 10.11858/gywlxb.2002.02.008
Abstract(9936) PDF(430)
Thermal Expansion Coefficients of Solids
YAN Zu-Tong
1991, 5(2): 145-148 .   doi: 10.11858/gywlxb.1991.02.010
Abstract(4886) PDF(434)
Influence of Diamond Particle-Size on Wearability of High Pressure Synthetic Polycrystal Diamond
Lü Zhi, DAI Yu-Zhi
1988, 2(1): 85-88 .   doi: 10.11858/gywlxb.1988.01.012
Abstract(3381) PDF(669)
Two-Dimensional Simulation of Transient Detonation Process for H2-O2-N2 Mixture
DONG Gang, FAN Bao-Chun, XIE Bo
2004, 18(1): 40-46 .   doi: 10.11858/gywlxb.2004.01.008
Abstract(9983) PDF(479)
Acoustic Velocity of Water under High Temperature and High Pressure: Validity of the Equation of State of Water
LI Fang-Fei, CUI Qi-Liang, LI Min, ZHOU Qiang, ZOU Guang-Tian
2008, 22(3): 281-285 .   doi: 10.11858/gywlxb.2008.03.010
Abstract(10007) PDF(515)
Analysis on the Influence of Multi-Layered Media on Stress Wave Propagation
DONG Yong-Xiang, HUANG Chen-Guang, DUAN Zhu-Ping
2005, 19(1): 59-65 .   doi: 10.11858/gywlxb.2005.01.011
Abstract(9529) PDF(420)
Shock Wave Compression of PZT 95/5 Ferroelectric Ceramic
LIU Gao-Min, DU Jin-Mei, LIU Yu-Sheng, TAN Hua, HE Hong-Liang
2008, 22(1): 30-34 .   doi: 10.11858/gywlxb.2008.01.007
Abstract(9912) PDF(428)
Synthesis and Characterization of h-BCN Nanocrystallite under High-Pressure and High-Temperature
LI Xue-Fei, ZHANG Jian, SHEN Long-Hai, YANG Da-Peng, CUI Qi-Liang, ZOU Guang-Tian
2007, 21(3): 237-241 .   doi: 10.11858/gywlxb.2007.03.003
Abstract(9762) PDF(507)
Application of Fiber Velocity Interferometer System for Any Reflector in High Pressure Physics
WENG Ji-Dong, TAN Hua, CHEN Jin-Bao, JIA Bo, HU Shao-Lou, MA Yun, WANG Xiang
2004, 18(3): 225-230 .   doi: 10.11858/gywlxb.2004.03.006
Abstract(10000) PDF(528)
An EPR Investigation of Nitrogen Impurities in Synthesized Diamond
ZHAN Rui-Yun, TANG Gong-Ben, LIU Ya-Yan, LIU Gui-Zhen, XU Jie, SUN Wan-Ming
1992, 6(3): 226-229 .   doi: 10.11858/gywlxb.1992.03.011
Abstract(5044) PDF(203)
Molecular Dynamics Studies of Material Behavior at High Strain Rates
YU Wan-Rui
1989, 3(2): 143-147 .   doi: 10.11858/gywlxb.1989.02.006
Abstract(4750) PDF(184)
Ultrasonic Measurement and Isothermal Equation of State for LY12Al under Static Pressures
ZHANG Ting, BI Yan, ZHAO Min-Guang
2005, 19(1): 35-40 .   doi: 10.11858/gywlxb.2005.01.007
Abstract(9975) PDF(391)
Numerical Simulation of Craters Produced by Projectile Hypervelocity Impact on Aluminum Targets
ZHANG Wei, MA Wen-Lai, MA Zhi-Tao, PANG Bao-Jun
2006, 20(1): 1-5 .   doi: 10.11858/gywlxb.2006.01.001
Abstract(9655) PDF(524)
Multi-Shock Hugoniot Equation of State of Liquid Carbon Monoxide Measured By an Optical Analysis Technique
ZHENG Xue-Ping, LIU Fu-Sheng, ZHANG Ming-Jian, CHEN Xian-Meng, SUN Yue
2008, 22(4): 419-424 .   doi: 10.11858/gywlxb.2008.04.014
Abstract(9939) PDF(482)
Thermodynamic Analysis of Diamond Growth with Catalyst at HPHT
XU Bin, LI Li, TIAN Bin, FAN Xiao-Hong, FENG Li-Ming
2009, 23(3): 189-195 .   doi: 10.11858/gywlxb.2009.03.005
Abstract(10031) PDF(433)
Electronic Behaviors of the Rocksalt and Monoclinic AgCl under Pressure
WANG Zuo-Cheng, CHE Li-Xin, LI Yan, CUI Tian, ZHANG Miao, NIU Ying-Li, MA Yan-Ming, ZOU Guang-Tian
2007, 21(3): 225-230 .   doi: 10.11858/gywlxb.2007.03.001
Abstract(9819) PDF(448)
Molecular Analysis of Stable Mutagenesis Rice Cultivar Induced by High Hydrostatic Pressure
SHEN Si-Le, XU Shi-Ping, WENG Ke-Nan, TAN Mei, ZHANG Jian-Feng, LONG Guo-Hui, JIA Xiao-Peng, CHI Yuan-Bin, LIU Bao, ZOU Guang-Tian
2004, 18(4): 289-294 .   doi: 10.11858/gywlxb.2004.04.001
Abstract(10424) PDF(479)
Electrical Conductivity and X-Ray Diffraction Study of Iron under High Pressures
HUANG Wei-Jun, CUI Qi-Liang, BI Yan, ZHOU Qiang, ZOU Guang-Tian
2007, 21(1): 40-44 .   doi: 10.11858/gywlxb.2007.01.007
Abstract(10240) PDF(482)
The Velocity and Elastic Constants in Fluid Oxygen under High Pressures and High Temperature
LI Min, CUI Qi-Liang, LI Fang-Fei, ZHOU Qiang, WU Xiao-Xin, ZOU Guang-Tian
2008, 22(3): 286-290 .   doi: 10.11858/gywlxb.2008.03.011
Abstract(5996) PDF(151)
Effect of High Pressure on Exoproteinase of Bacillus subtilis
XIE Hui-Ming, HUANG Xun-Duan, PAN Jian, ZENG Qing-Mei, WANG Hai-Xiang, JIANG Ye-Lei
2007, 21(1): 95-102 .   doi: 10.11858/gywlxb.2007.01.016
Abstract(9490) PDF(364)
Study on Standard Cylinder Test Technology and Data Processing Method
SUN Zhan-Feng, LI Qing-Zhong, SUN Xue-Lin, WU Jian-Hua, TANG Tie-Gang
2008, 22(2): 160-166 .   doi: 10.11858/gywlxb.2008.02.009
Abstract(10039) PDF(489)
Studies on the Fracture Behaviour for 93 Tungsten Alloy
ZHANG Wan-Jia, YANG Zhong-Zheng
1995, 9(4): 279-288 .   doi: 10.11858/gywlxb.1995.04.007
Abstract(3800) PDF(221)
Microwave Radiation Measurement on Hypervelocity Impacts
MA Ping, LIU Sen, HUANG Jie, SHI An-Hua, MIAO Jun-Gang
2008, 22(2): 220-224 .   doi: 10.11858/gywlxb.2008.02.018
Abstract(9786) PDF(490)
Study on the Curves of Melting Temperature Pressure of Al, Cu and Pb
ZHENG Wei-Tao, ZHANG Rui-Lin
1993, 7(1): 42-46 .   doi: 10.11858/gywlxb.1993.01.006
Abstract(8866) PDF(906)
The Experimental Research of Heat Resistance of Octahedral Boron-Skinned Diamond
ZHANG Qing-Fu, GOU Qing-Quan, LIU Lü-Hua, ZHANG Hui-Ping
1991, 5(4): 291-295 .   doi: 10.11858/gywlxb.1991.04.008
Abstract(4190) PDF(630)
Influence of Ultra High Pressure on Peroxidase Pectin Methyl Esterase and Soluble Protein in Litchi Fruit
HUANG Li, SUN Yuan-Ming, PAN Ke, CHEN Bai-Nuan, LIANG Di-Wen, CHEN Guo-Lian, YU Hong-Ying
2005, 19(2): 179-183 .   doi: 10.11858/gywlxb.2005.02.014
Abstract(9583) PDF(413)
New Method for Calculating Cold Energy, Cold Pressure and Cohesive Energy of Solids
RAN Xian-Wen, TANG Wen-Hui
2003, 17(1): 50-55 .   doi: 10.11858/gywlxb.2003.01.008
Abstract(10185) PDF(550)

Hosted by:Topical Communitte of High Pressure,
Chinese Physical Society

Sponsored by:Institute of Fluid Physics,CAEP

Editor-in-Chief:ZOU Guangtian