Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Display Method:
Display Method:
2019, Volume 33, issue 1
2019, 33(1): 1-1.  
PDF (2)
Water is not only omnipresent on the Earth but also ubiquitous in the solar system such as on comets, asteroids, or icy moons of the giant planets. Hence, exploration of different forms of ice in different environment has significant implication to physical science, chemical science, bioscience, geoscience and planetary science. Depending on the surrounding conditions of pressure and temperature, water ice exhibits an exceptionally rich and complicated phase diagram. To date, at least eighteen crystalline ice phases (ice Ih, Ic, ice II to ice XVII) have been identified under laboratory conditions. In addition, there are many hypothetical ultralow-density ice phases from clathrate hydrates, such as structure I (s-I), structure II (s-II), structure H (s-H), structure K (s-K) and structure T (s-T) ices. Recently, the s-II clathrate ice (ice XVI) produced in the laboratory emerges in the negative pressure part of phase diagram, which stimulates greatly people to explore the other low-density clathrate ices. Using extensive Monte Carlo packing algorithm, classical molecular dynamins simulations, and dispersion-corrected density functional theory optimization, we predict two cubic clathrate ices with ultralow densities, and name them as s-III (ρ=0.593 g/cm3) and s-IV (ρ=0.506 g/cm3) clathrate ices. The unit cell of s-III clathrate ice is composed of two large icosihexahedral cavities (8668412) and six small decahedral cavities (8248), while the unit cell of s-IV clathrate ice is constructed by eight large icosihexahedral cavities (12464418), eight intermediate dodecahedral cavities (6646), and six small octahedral cavities (6246). For these two clathrate ices, the large-sized icosihexahedral cavities and the unique packed patterns among different cavities result in their record low densities. Considering all the low-density (lower than ice XI or equal to ice XI) ices, we construct a new p-T (pressure-temperature) phase diagram of water with TIP4P/2005 model potential under negative pressures. Below the deeply negative-pressure region of s-II clathrate ice, s-III and s-IV clathrate ices replace s-H clathrate ice, arising as the most stable ice phases in the high-temperature part and the low-temperature part, respectively. As a result, a triple point (T = 115 K, p = –488.2 MPa) appears in the phase diagram. The density functional theory calculations suggest that the s-III and s-IV clathrate ices can be fully stabilized by encapsulating an appropriate guest molecule such as dodecahedrane molecule (C 20H20) and fullerene molecule (C60) in the large cavity, respectively. Considering that the guest-free s-II clathrate ice has been produced in the laboratory, which is also recognized as ice XVI, both the s-III and s-IV clathrate ices can be viewed as potential candidates of ice XVIII or ice XIX. Computations show that the hydrogen storage capacities of s-III ice clathrate amount to nearly twice of those for the s-II ice clathrate at low temperature and room temperature, which satisfies the DOE ultimate target for on-board hydrogen storage.
High pressure shock and α-decay radiation are two extreme conditions capable of leading to damages on crystal lattices of solid materials. The present work investigated the influence of shocking on the structural variations of titanite (CaTiSiO5) using a gas gun shock-wave technology. The results were used to compare the similarities and differences in spectral and structural changes between shocked and α-decay radiation damaged titanite, as α-decay radiation process was considered as involved in a fast high pressure process. The results showed that high pressure shock and α-decay radiation can both produce defective crystal lattice and even amorphous phases in titanite, resulting in a decrease in band intensity, a line boarding and a loss of spectral details in X-ray diffraction patterns, infrared and Raman spectra. However, there are distinct differences in the detailed processes and damage mechanisms between the two processes. High-pressure shock causes the main peak of the Ti-O stretching vibration in titanite shifts to a lower frequency, which is opposite to its behaviour in radiation damaged samples. Furthermore, shocking leads to a reduction of unit cell parameters a, b, c and cell volume V, quite contrary to a unit-cell swelling caused by radiation damage.
Lead selenide (PbSe) has received extensive attention in recent years as a non-tellurium thermoelectric material. In this paper, PbSe-PbS solid solution alloys (PbSe1–xSx) were prepared by mechanical alloying combined with high pressure sintering method. The influence of Se/S content on its structure and thermoelectric properties was studied. The results demonstrate that the mechanical alloying method can rapidly synthesize PbSe1–xSx solid solution alloy powder, and achieve rapid densification by high pressure sintering. The electrical transport properties and conductivity type of PbSe1–xSx powder can be controlled by adjusting the Se/S ratio; solid solution alloy can realize short-wave phonon scattering, which significantly reduces the thermal conductivity of PbSe material. When x = 0.5 and the temperature is 600 K, the highest quality factor of PbSe1–xSx is 0.54, which is 64% higher than that of PbSe (0.33@450 K).
The crystals of Ir2P were predicted under the pressure ranging from 0 to 100 GPa using the CALYPSO structure exploration technique with the first-principles method based on the density functional theory. The predicted physical properties and crystal structures were examined in detail. At ambient pressure, the predicted α-Ir2P phase was found to have a cubic structure with Fm3m space group, which is consistent with the experimental structure. The pressure-induced structural transformations were unraveled, from the α-Ir2P phase to the β-Ir2P phase at 86.4 GPa. The predicted β-Ir2P phase has I4/mmm space group. In the process of phase transition, the volume of the crystal collapses and a discontinuous first order phase transition occurred. The calculation of the electronic properties showed that the predicted conduction bands and the valence bands of the β-Ir2P phase overlap near the Fermi surface at 86.4 GPa, indicating that the structure of the β-Ir2P phase has metallic properties. The electron localization function revealed that the β-Ir2P phase has a polar covalent bond, a metallic bond and an ionic bond. The Bader charge transfer calculations showed that each P atom transfers 0.19e to Ir atom, mainly due to the strong electronegativity of the Ir atoms.
The evolution processes of metal/gas (Li/H2) interface at extreme impacting conditions (22.50–78.75 km/s) were numerically studied by molecular dynamics (MD) method incorporated with the electron force field (eFF) model. It was found that the strong shock compression leads to ionization and the electron/ion separation is produced due to different diffusivities of ions and electrons. Then a strong extra electric field was established adjacent to shock font. Through 1D statistic along shock propagating direction from MD results and theoretical analysis, it was found that the electron/ion separation is moving with shock and the intensity and width of electron/ion separation zone are kept to be constant during shock propagating process and determined by shock strength. Further integrating the extra electric field and extra acceleration of metal material adjacent to the interface, the time histories of material acceleration were obtained. It was found that the extra material acceleration curves were in accordance with Rayleigh model. The key parameters were fitted based on computation results. Finally, an empirical extra acceleration evaluation model of metal material on Li/H2 interface under impact velocity range of 20–80 km/s was established.
By using our in-house large-eddy simulation code, the MVFT (multi-viscous-flow and turbulence), we simulated the Richtmyer-Meshkov (RM) instability and turbulent mixed with the inverse chevron interface on a 3D large scale on the HPC (high performance computing) platform. The results revealed the propagations of the decomposed shock wave, the rarefaction wave, the compression wave and the interactions between the waves and the perturbed interface. Each impact of on the wave on the interface accelerates the evolution of the turbulent mixing zone and the materials’ mixing. The inverse chevron interface inverts its phase after the first transmitted shock wave in the SF6 zone hits it, then two wall bubbles and a centerline spike with large scale develop gradually. The averaged geometry feature and the envelop of turbulent mixing zone are determined by the large-scale wall bubbles and the centerline spike and are independent of the mesh. But with the higher grid resolution, more subtle small scale turbulent eddies and intense turbulent fluctuations are captured, characterizing the turbulent mixing zone as possessing a complex structure.
Diamonds with excellent performances were used widely in national defense construction, mechanical processing, electronic science and technology, and so on. The demand for diamonds at home and abroad is also increasing. Finite element method (FEM) is suitable for simulation analysis of complex geometric structure and physical problems. FEM is applied to the optimization of synthetic technology and corresponding device for diamond. In this paper, the application progress of FEM in the apparatus of high pressure and the chamber of diamond synthesis are reviewed. Firstly, hinge beam and working cylinder are simulated and analyzed by considering facts such as static forces, stress strength, stress distribution, and deformation. Also, the mechanism of the action, the damage, and the new design for anvil were simulated and analyzed by FEM. Secondly, it is summarized that the application progress of diamond chamber with temperature field, pressure field, and electrical field, etc. is simulated and analyzed using FEM. Finally, the application prospect of FEM in diamond synthesis is forecasted.
A novel tangential split apparatus was designed to improve the pressure bearing capacity of the ultra-high pressure die. The tangential block structure can not only eliminate the circumferential tensile stress of the inner wall of the cylinder through mutual friction and extrusion on the split surface, but also generate a large circumferential compressive stress on the inner wall. This pressed state is very advantageous for the cemented carbide material and can significantly increase the ultimate pressure capacity of the cylinder. The numerical simulation results show that under the same load conditions, the equivalent stress of the segmented cylinder is significantly less than that of the belt cylinder. The three principal stresses on the inner wall of the block cylinder are compressive stress, and the difference is small. These stresses are close to the isostatic pressure state, so the cylinder can withstand higher sample chamber pressure. The comparative experimental results also prove that the tangential split-belt ultrahigh pressure apparatus has higher ultimate load carrying capacity.
A crystal plasticity finite element model combined with equation of state was built to simulate the dynamic elastic-plastic large deformation behavior of <100> LiF under high-rate shock loading. The characterization of the stress wave profile, the patterns of the dynamic mechanical evolution and their essential causes in view of the continuum mechanics were obtained through simulations, with the following results achieved: (1) the wave profiles of millimeter-sized specimens exhibit elastic-plastic two-wave response, elastic precursor decay and stress relaxation below 15 GPa; (2) in view of continuum mechanics, the stress relaxation is essentially due to the viscous plastic flow which accounts for the increase rate of the total strain being less than that of the plastic strain, and which further reduces the elastic strain and pressure; (3) the third derivative of pressure to time being greater than zero was proposed as a criterion for estimating the critical pressure of the two-wave and the one-wave response of the stress wave profile, and the estimation result indicated that the critical pressure increased with the increase of the doping concentration in specimen; (4) the effect of temperature rise during the high-rate shock deformation is non-negligible, and the elastic volumetric deformation contributes to most of the temperature rise.
In order to study the change law of physical parameters in the process of rock fracturing and throwing during slope bench blasting, the equation of rock damage under dynamic tension-compression effect was established and applied to numerical analysis. The results showed that the tendency of time node and step size in simulation was basically identical with the triaxial synthetic rate curve of vibration wave and particle vibration displacement, which can be used as a criterion for reducing vibration and decreasing disaster. Cracks were formed in the foot of slope at about 0.6 ms and completely extended at about 12.5 ms. The pulverizing area radius around the blast hole was 28 cm. The rock separation phenomenon was preliminarily observed at the middle part of the blast hole. The maximum throwing velocity was distributed in the vertical region between this part and the free surface of the slope. The throwing velocity at the free surface was less than that of the rocks around the blast hole, which results in the secondary crushing phenomenon during the throwing process. The large bulk rocks were mainly produced in the toe of slope, the surrounding rock on both sides of the contact surface between explosive and plug, and the free-surface at the top of the step. The range of large rock diameter in the process of blasting was 1.6–2.7 m.
The Lagrangian analysis method was employed to investigate the deformation mechanism and stress response of graded metallic foams. The mesoscopic finite element models of the graded metallic foams with five different density gradient parameters were constructed by the 3D-Voronoi technique, and the corresponding Taylor numerical tests were performed under high-speed impact, and the particle velocity distributions of different graded foams were obtained. By combining the Lagrangian analysis method with the results of Taylor numerical tests, the effects of density gradient parameters on the local strain distribution, stress distribution, shock wave propagation and attenuation of metallic foams under high-speed impact were investigated. The results show that the metallic foams with negative density gradient have better resistance to vertical deformation than those with positive density gradient, and the deformation degree decreases with the decrease of the density gradient parameter. The local densification stress distribution of the metallic foams with negative density gradient decreases linearly, and the maximum local densification stress increases with the decrease of the density gradient parameter. The metallic foams with negative density gradient have high load bearing capability near the impact end. The local densification stress distribution of the metallic foams with positive density gradient has a plateau stage, and the maximum local densification stress is less than metallic foams with negative density gradient.
In this work we investigated the quasi-static and dynamic compression of spherical cell aluminum foam with homogeneous pore morphology and size. We identified the deformation mechanisms of the aluminum foam in the quasi-static compression at both macroscopic and mesoscopic levels using digital image correlation. The results showed that the compressive strength, plateau stress and energy absorption were significantly improved by increasing the loading strain rate, that is, the spherical cell aluminum foam exhibited obvious strain rate sensitivity. Because of the inhomogeneous cell wall thickness and the random distribution of cell wall defects, the deformation bands dominated the compressive behavior during the compression process, and the strain concentration zones were observed on the single cell hole where the cell wall defects were identified. Meanwhile we examined the implications of compressive behaviors operating on the mesoscopic cell walls and the formation of macroscopic deformation bands. The deformation modes of cells mainly fell into 3 types, i.e. axial compression, shear, torsion and shear combined deformation. The failure mode of the cell walls throughout the deformation zone was mostly determined by shear deformation, which was obviously related with the cell wall thickness and the loading direction.
In this work we performed blast loading tests on basalt fiber-aluminum alloy laminates and carbon fiber-aluminum alloy laminate using an explosion impact pendulum system and obtained different loading impulses by changing the quality of the explosive, thereby analyzing the influences of load impulse, structure combination and fiber type on the deformation/failure mode of fiber metal laminates and revealing the laminates’ typical failure modes such as delamination, matrix failure, metal tear and plastic deformation. The experimental results showed that the plastic deformations of the aluminum alloy layer in the fiber metal laminate and the damage area of the fiber layer increase with the increase of the impulse, and the fiber metal laminates have better impact resistance than that of the single metal laminate.
In this study we analyzed the shock initiation process of covered TNT using experiments and LS-DYNA3D to study the damage effect of the near-field strong shock wave on the covered charge. We obtained the critical thickness of the covered plate for detonating TNT during contact explosion and the sympathetic detonation distance of the covered TNT during non-contact explosion and the relation between the covered plate thickness and the distance of the explosion using the non-linear least square method. The results show that the numerical simulation results accord well with the experimental results. The sympathetic detonation distance of the covered-pressed TNT in non-contact explosion ranges from 12-15 mm when the thickness of the 45 steel covered plate is 3 mm. The critical thickness of the covered plate is between 20 and 23 mm for the pressed TNT ignited by contact explosion. The sympathetic detonation distance of the non-contact explosion decreases as the covered plate thickness increases. Without a covered plate, the sympathetic detonation distance is 79 mm. When the thickness of the covered plate increases from 1 mm to 5 mm, the sympathetic detonation distance reduces from 51 mm to 1.5 mm. The thickness of the covered plate is of great importance for the protection against shock waves.
Two charge samples of same composite and shape, but one with and the other without an aluminum interlayer, were prepared following the designated inner/outer composite charge. The expansion process of the aluminum interlayer was determined by X-ray technology, and the difference in the driving capability between the two charges were compared using the high speed scanning and the cylinder test. The results show that the detonation wave does not change obviously due to the similar impedance. The detonation products of the inner and outer charges can be divided by the interlayer when the relative specific volume is below 3.0. However, the driving ability is not affected and the ratio of the specific kinetic energy of the two charges is gradually close to the ratio of the two effective charging masses.
In this study we investigated the residual characteristics of the high velocity fragments penetrating the protective liquid cabin using finite element analysis by ANSYS/LS-DYNA, found out about the variation of the penetration depth and the velocity of the fragment after the fragments’ penetration into the vertical and inclined liquid cabins, and discussed the optimal inclination angle of the liquid tank in a ship. The results indicated that the presence of the inclination feature of the liquid cabin helps to reduce the instantaneous velocity of the fragments entering the water, and the velocity dropped faster in water with the increase of the instantaneous velocity of the fragments. In the stage of impact and cavitation, the penetration depth of the fragments rose immediately, and the larger the instantaneous velocity, the faster the increase of the penetration depth. The penetration depth in the two phases was about 10% of the final penetration. Judging by the rate of the decrease of the projectile’s velocity and that of increase of the fragments’ penetration depth, we conclude that the tank with a tilt of 60° can achieve better protection.
In this work we improved the explosion shock wave mitigation capability of the interruption structure in the tandem cutting warhead and matched the front shaped charge with the post-stage projectile and the explosive interruption by installing the explosive interruption structure between the front cutter and the rear following projectile, and established the simulation model using ANSYS/LS-DYNA, a finite element analysis software. We also analyzed the mitigation capabilities of the structures in different combinations and compared their explosive interruption capabilities using numerical simulation. The results showed that the explosion shock wave first converged to the inner region of the projectile, rather than to the tip of the warhead, so that the tip area of the outer metal flameproof medium was thinned properly. When the outer metal turned from hard steel to aluminum, little change was observed in the stress peak value of the rear end shell, suggesting that the outer metal medium was aluminum. Judging by the comparative study, the aluminum polyurea flameproof capability was superior to the aluminum foam-aluminum structure. Finally, the "soft" explosive interruption medium was determined to be polyurea, and the best explosion proof parameters were determined by adjusting the thickness of the aluminum and polyurea layer, which serves the needs of practical applications.
To investigate the penetration of steel plates by fragment simulated projectiles (FSP), we carried out a theoretical analysis of the steel plate’s penetration process, dividing it into 4 stages, sequentially of initial contact, penetration, plugging and perforation and successfully obtaining the formula that calculate the penetration remaining velocity and energy transformation. The calculation result is in good agreement with theresults from experiment and finite element observation. The formula is applicable to practical steel plate design.
In this study we aimed to study the effects of high hydrostatic pressure (HHP) with bamboo vinegar (BV) on enhancing the quality and improving the protein properties of perch (Lateolabrax japonicus) fillets over refrigerated storage. We treated fillet samples stored under refrigerated conditions at 4 °C using HHP (250 MPa, 9 min) along with 0, 1%, 2%, 3% BV respectively. We calibrated the physicochemical qualities (color difference, pH value, electrical conductivity and total volatile basic nitrogen (TVB-N) value) and examined the changes that occurred in terms of the sensory impressions and protein properties (actin globulin content, total sulfhydryl content, TCA soluble oligopeptide elution) of the samples on the 1st, 4th, 8th, 12th, 14th, 16th, and 18th day respectively during the storage time. The results showed that the samples exhibited obvious quality improvement: the TVB-N value of the samples treated by HHP with 3% BV was (31.88±1.33) mgN/100 g on 18th day, significantly lower than that of CK group ((44.77±1.89) mgN/100 g). In addition, the treatment also reduced the increase of the pH value and electrical conductivity, thereby significantly slowing down the protein degradation and maintaining its good characteristics. Finally, the shelf life of the perch fillets thus treated in cold storage was prolonged by four days.
A new approach is presented herein to predict the failure of metallic materials. A failure criterion that caters for the effects of stress triaxiality and Lode parameter is proposed and it is applicable not only to metals with ēf > ef but also to metals with ēfef , here ēf and ef are the two parameters defined as the true strains at stress triaxiality of η = 1/3 for Lode parameters of ξ = 1 (axisymmetric stress state) and ξ = 0 (plane strain state) respectively. Furthermore, only two laboratory tests such as smooth bar tension test and pure shear test are needed to calibrate the failure criterion. The present failure criterion is proved in good agreement with the test data for various metals under different loading conditions.
Experimental Study of the Effect of Shear Stress on Phase Transition in c-Axis CdS Single Crystal under Dynamic Loading
TANG Zhi-Ping, Gupta Y M
1989, 3(4): 290-297 .   doi: 10.11858/gywlxb.1989.04.005
Abstract(1587) PDF(6)
The Generation of 90 GPa Quasi-Hydrostatic Pressures and the Measurements of Pressure Distribution
LIU Zhen-Xian, CUI Qi-Liang, ZOU Guang-Tian
1989, 3(4): 284-289 .   doi: 10.11858/gywlxb.1989.04.004
Abstract(2005) PDF(8)
Development of Large Volume-High Static Pressure Techniques Based on the Hinge-Type Cubic Presses
WANG Hai-Kuo, HE Duan-Wei, XU Chao, GUAN Jun-Wei, WANG Wen-Dan, KOU Zi-Li, PENG Fang
2013, 27(5): 633-661.   doi: 10.11858/gywlxb.2013.05.001
Abstract(1371) PDF(6)
A Study on Calculation of the Linear Thermal Expansion Coefficients of Metals
ZHENG Wei-Tao, DING Tao, ZHONG Feng-Lan, ZHANG Jian-Min, ZHANG Rui-Lin
1994, 8(4): 302-305 .   doi: 10.11858/gywlxb.1994.04.010
Abstract(3070) PDF(4)
Long-Distance Flight Performances of Spherical Fragments
TAN Duo-Wang, WEN Dian-Ying, ZHANG Zhong-Bin, YU Chuan, XIE Pan-Hai
2002, 16(4): 271-275 .   doi: 10.11858/gywlxb.2002.04.006
Abstract(1819) PDF(5)
Numerical Simulation of the Interactions between Hyperpressure Waterjet and Explosive
HE Yuan-Hang, LI Hai-Jun, ZHANG Qing-Ming
2005, 19(2): 169-173 .   doi: 10.11858/gywlxb.2005.02.012
Abstract(1830) PDF(4)
Chemical Synthesis and Characterization of Flaky h-CN by HPHT
YANG Da-Peng, LI Ying-Ai, DU Yong-Hui, SU Zuo-Peng, JI Xiao-Rui, YANG Xu-Xin, GONG Xi-Liang, ZHANG Tie-Chen
2007, 21(3): 295-298 .   doi: 10.11858/gywlxb.2007.03.013
Abstract(2274) PDF(15)
Detonation Shock Dynamics Calibration of JB-9014 Explosive at Ambient Temperature
TAN Duo-Wang, FANG Qing, ZHANG Guang-Sheng, HE Zhi
2009, 23(3): 161-166 .   doi: 10.11858/gywlxb.2009.03.001
Abstract(2124) PDF(4)
Phase Evolution of Zr-Based Bulk Metallic Glass Prepared by Shock-Wave Quenching under High Temperature and High Pressure
YANG Chao, CHEN Wei-Ping, ZHAN Zai-Ji, JIANG Jian-Zhong
2007, 21(3): 283-288 .   doi: 10.11858/gywlxb.2007.03.011
Abstract(2062) PDF(3)
Design and Temperature Calibration for Heater Cell of Split-Sphere High Pressure Apparatus Based on the Hinge-Type Cubic-Anvil Press
CHEN Xiao-Fang, HE Duan-Wei, WANG Fu-Long, ZHANG Jian, LI Yong-Jun, FANG Lei-Ming, LEI Li, KOU Zi-Li
2009, 23(2): 98-104 .   doi: 10.11858/gywlxb.2009.02.004
Abstract(2325) PDF(2)
Activities of Antioxidative Enzymes and the Responds to Cold Stress of Rice Treated by High Hydrostatic Pressure
BAI Cheng-Ke, LI Gui-Shuang, DUAN Jun, PENG Chang-Lian, WENG Ke-Nan, XU Shi-Ping
2005, 19(3): 235-240 .   doi: 10.11858/gywlxb.2005.03.008
Abstract(1970) PDF(1)
Discussions on the VLW Equation of State
LONG Xin-Ping, HE Bi, JIANG Xiao-Hua, WU Xiong
2003, 17(4): 247-254 .   doi: 10.11858/gywlxb.2003.04.002
Abstract(1799) PDF(4)
Numerical Simulation of Hypervelocity Launch of Flier Plate with Gradual Change Impedance
CHEN Lang, LIU Qun, LU Jian-Ying, GONG Zi-Zheng, GUO Xin-Wei
2009, 23(3): 167-172 .   doi: 10.11858/gywlxb.2009.03.002
Abstract(2028) PDF(2)
Effects of Liner Curvature Radius on Formation of Double-Layered Spherical Segment Charge Liner into Tandem Explosively Formed Projectile (EFP)
ZHENG Yu, WANG Xiao-Ming, LI Wen-Bin, LI Wei-Bing
2009, 23(3): 229-235 .   doi: 10.11858/gywlxb.2009.03.011
Abstract(2517) PDF(3)
Analysis of Equivalence for Structural Response Induced by Pulsed X-Ray with Other Analogue Sources
PENG Chang-Xian
2002, 16(2): 105-110 .   doi: 10.11858/gywlxb.2002.02.004
Abstract(1797) PDF(6)
Application Research on JWL Equation of State of Detonation Products
ZHAO Zheng, TAO Gang, DU Chang-Xing
2009, 23(4): 277-282 .   doi: 10.11858/gywlxb.2009.04.007
Abstract(2715) PDF(2)
The Failure Strength Parameters of HJC and RHT Concrete Constitutive Models
ZHANG Ruo-Qi, DING Yu-Qing, TANG Wen-Hui, RAN Xian-Wen
2011, 25(1): 15-22 .   doi: 10.11858/gywlxb.2011.01.003
Abstract(4384) PDF(3)
Studies on the Distribution of Breakdown Liquid Particle Size under Explosive Detonation
HU Dong, HAN Zhao-Yuan, ZHANG Shou-Qi, ZHAO Yu-Hua, WANG Bing-Ren, CHEN Jun, SUN Zhu-Mei, CAI Qing-Jun, YAO Jiu-Cheng, DONG Shi
2008, 22(1): 6-10 .   doi: 10.11858/gywlxb.2008.01.002
Abstract(3022) PDF(1)
Effect of Boron Contained in the Catalyst on Thermal Stability of Boron-Doped Diamond Single Crystals
WANG Mei, LI He-Sheng, LI Mu-Sen, GONG Jian-Hong, TIAN Bin
2008, 22(2): 215-219 .   doi: 10.11858/gywlxb.2008.02.017
Abstract(1981) PDF(3)
A Kind of Anodized Aluminium Shock Wave Detectors
SUN Yue, YUAN Chang-Ying, ZHANG Xiu-Lu, WU Guo-Dong
2004, 18(2): 157-162 .   doi: 10.11858/gywlxb.2004.02.011
Abstract(2052) PDF(2)
Failure Modes of Ductile Metal Plates under Normal Impact by Flat-Ended Projectiles
PAN Jian-Hua, WEN He-Ming
2007, 21(2): 157-164 .   doi: 10.11858/gywlxb.2007.02.007
Abstract(1783) PDF(4)
Investigation of in Situ Raman Spectrum and Electrical Conductivity of PbMoO4 at High Pressure
YU Cui-Ling, YU Qing-Jiang, GAO Chun-Xiao, LIU Bao, HE Chun-Yuan, HUANG Xiao-Wei, HAO Ai-Min, ZHANG Dong-Mei, CUI Xiao-Yan, LIU Cai-Long, et al.
2007, 21(3): 259-263 .   doi: 10.11858/gywlxb.2007.03.007
Abstract(1714) PDF(1)
Experimental Validation of Quasi-Elastic Response of Metal during Reloading Process
SONG Ping, ZHOU Xian-Ming, YUAN Shuai, LI Jia-Bo, WANG Xiao-Song
2007, 21(3): 327-331 .   doi: 10.11858/gywlxb.2007.03.019
Abstract(1734) PDF(3)
Comment on the Pressure Gauge for the Experiments at High Temperature and High Pressure with DAC
ZHENG Hai-Fei, SUN Qiang, ZHAO Jin, DUAN Ti-Yu
2004, 18(1): 78-82 .   doi: 10.11858/gywlxb.2004.01.014
Abstract(1980) PDF(3)
The Launching Technique of Hypervelocity Projectiles in Two-Stage Light Gas Gun
WANG Jin-Gui
1992, 6(4): 264-272 .   doi: 10.11858/gywlxb.1992.04.004
Abstract(3648) PDF(1)
Shock Wave Physics: The Coming Challenges and Exciting Opportunities in the New Century-Introduction of the 12th International Conference of Shock Compression of Condensed Matter (SCCM-2001)
GONG Zi-Zheng
2002, 16(2): 152-160 .   doi: 10.11858/gywlxb.2002.02.012
Abstract(1791) PDF(1)
Two-Dimensional Numerical Simulation of Explosion for Premixed CH4-O2-N2 Mixture
LI Cheng-Bing, WU Guo-Dong, JING Fu-Qian
2009, 23(5): 367-376 .   doi: 10.11858/gywlxb.2009.05.008
Abstract(1577) PDF(2)
Evaluation for Uncertainty of Particle Velocity in Hugoniot Measurements
DAI Cheng-Da, WANG Xiang, TAN Hua
2005, 19(2): 113-119 .   doi: 10.11858/gywlxb.2005.02.003
Abstract(2000) PDF(3)
Experiment and Numerical Simulation of Cylindrical Explosive Isostatic Pressing
CHEN Lang, LU Jian-Ying, ZHANG Ming, HAN Chao, FENG Chang-Gen
2008, 22(2): 113-117 .   doi: 10.11858/gywlxb.2008.02.001
Abstract(1891) PDF(1)
Structure and Ferroelectric Properties of Dense Nanocrystalline BaTiO3 Ceramics Prepared by High Pressure Sintering Method
LI Peng-Fei, JIN Chang-Qing, XIAO Chang-Jiang, PAN Li-Qing, WANG Xiao-Hui
2007, 21(3): 249-252 .   doi: 10.11858/gywlxb.2007.03.005
Abstract(1763) PDF(3)
In-Situ High-Pressure X-Ray Diffraction of Natural Beryl
QIN Shan, LIU Jing, LI Hai-Jian, ZHU Xiang-Ping, LI Xiao-Dong
2008, 22(1): 1-5 .   doi: 10.11858/gywlxb.2008.01.001
Abstract(2093) PDF(1)
Isothermal Equations of State of Au and Pt at Room Temperature: Implication for Pressure Scales
JIN Ke, WU Qiang, LI Xin-Zhu, CAI Ling-Cang, JING Fu-Qian
2009, 23(3): 181-188 .   doi: 10.11858/gywlxb.2009.03.004
Abstract(1859) PDF(3)
Effect of Pressure on Carbon Concentration in C-H-O Supercritical-Fluid
ZHAO Xian-Feng, HONG Shi-Ming, LIU Fu-Sheng
2003, 17(2): 101-105 .   doi: 10.11858/gywlxb.2003.02.004
Abstract(2059) PDF(4)
Phase Transformation Mechanism of Single Crystal Iron from MD Simulation
CUI Xin-Lin, ZHU Wen-Jun, HE Hong-Liang, DENG Xiao-Liang, LI Ying-Jun
2007, 21(4): 433-438 .   doi: 10.11858/gywlxb.2007.04.017
Abstract(1467) PDF(5)
Response of Homemade PVDF Piezofilm under Shock Loading and Unloading
LI Yan, ZHANG Xiang-Rong, TAN Hong-Mei, LIU Xiao-Ling, PEI Ming-Jing
2004, 18(3): 261-266 .   doi: 10.11858/gywlxb.2004.03.011
Abstract(2254) PDF(13)
Research on Using Raman Spectra of Carborundum Anvil as Pressure Sensor at Pressure of 0.1~3 000 MPa
QU Qing-Ming, ZHENG Hai-Fei
2007, 21(3): 332-336 .   doi: 10.11858/gywlxb.2007.03.020
Abstract(1816) PDF(4)
Shock-Activating and Sintering of Hydroxyapatite Agglomerate
LIAO Qi-Long, YANG Shi-Yuan, CAI Ling-Cang, ZHENG Chang-Qiong
2003, 17(3): 209-213 .   doi: 10.11858/gywlxb.2003.03.009
Abstract(1555) PDF(2)
Acoustic Velocity of Water under High Temperature and High Pressure: Validity of the Equation of State of Water
LI Fang-Fei, CUI Qi-Liang, LI Min, ZHOU Qiang, ZOU Guang-Tian
2008, 22(3): 281-285 .   doi: 10.11858/gywlxb.2008.03.010
Abstract(1824) PDF(2)
Application of Fiber Velocity Interferometer System for Any Reflector in High Pressure Physics
WENG Ji-Dong, TAN Hua, CHEN Jin-Bao, JIA Bo, HU Shao-Lou, MA Yun, WANG Xiang
2004, 18(3): 225-230 .   doi: 10.11858/gywlxb.2004.03.006
Abstract(2077) PDF(11)
Perimeter-Area Relation of Fractal Island
1990, 4(4): 259-262 .   doi: 10.11858/gywlxb.1990.04.004
Abstract(1761) PDF(2)
Analysis on the Influence of Multi-Layered Media on Stress Wave Propagation
DONG Yong-Xiang, HUANG Chen-Guang, DUAN Zhu-Ping
2005, 19(1): 59-65 .   doi: 10.11858/gywlxb.2005.01.011
Abstract(1601) PDF(3)
Synthesis and Characterization of h-BCN Nanocrystallite under High-Pressure and High-Temperature
LI Xue-Fei, ZHANG Jian, SHEN Long-Hai, YANG Da-Peng, CUI Qi-Liang, ZOU Guang-Tian
2007, 21(3): 237-241 .   doi: 10.11858/gywlxb.2007.03.003
Abstract(1472) PDF(2)
Shock Wave Compression of PZT 95/5 Ferroelectric Ceramic
LIU Gao-Min, DU Jin-Mei, LIU Yu-Sheng, TAN Hua, HE Hong-Liang
2008, 22(1): 30-34 .   doi: 10.11858/gywlxb.2008.01.007
Abstract(1871) PDF(3)
Ultrasonic Measurement and Isothermal Equation of State for LY12Al under Static Pressures
ZHANG Ting, BI Yan, ZHAO Min-Guang
2005, 19(1): 35-40 .   doi: 10.11858/gywlxb.2005.01.007
Abstract(1685) PDF(4)
Thermodynamic Analysis of Diamond Growth with Catalyst at HPHT
XU Bin, LI Li, TIAN Bin, FAN Xiao-Hong, FENG Li-Ming
2009, 23(3): 189-195 .   doi: 10.11858/gywlxb.2009.03.005
Abstract(1769) PDF(3)
Molecular Analysis of Stable Mutagenesis Rice Cultivar Induced by High Hydrostatic Pressure
SHEN Si-Le, XU Shi-Ping, WENG Ke-Nan, TAN Mei, ZHANG Jian-Feng, LONG Guo-Hui, JIA Xiao-Peng, CHI Yuan-Bin, LIU Bao, ZOU Guang-Tian
2004, 18(4): 289-294 .   doi: 10.11858/gywlxb.2004.04.001
Abstract(2016) PDF(3)
Electrical Conductivity and X-Ray Diffraction Study of Iron under High Pressures
HUANG Wei-Jun, CUI Qi-Liang, BI Yan, ZHOU Qiang, ZOU Guang-Tian
2007, 21(1): 40-44 .   doi: 10.11858/gywlxb.2007.01.007
Abstract(1701) PDF(6)
An Approximate Relation between Cubical Thermal Expansion Coefficient of Solid and Pressure
YAN Zu-Tong
2000, 14(4): 253-256 .   doi: 10.11858/gywlxb.2000.04.003
Abstract(1974) PDF(1)
Two-Dimensional Simulation of Transient Detonation Process for H2-O2-N2 Mixture
DONG Gang, FAN Bao-Chun, XIE Bo
2004, 18(1): 40-46 .   doi: 10.11858/gywlxb.2004.01.008
Abstract(1537) PDF(2)
Microwave Radiation Measurement on Hypervelocity Impacts
MA Ping, LIU Sen, HUANG Jie, SHI An-Hua, MIAO Jun-Gang
2008, 22(2): 220-224 .   doi: 10.11858/gywlxb.2008.02.018
Abstract(1628) PDF(4)
Electronic Behaviors of the Rocksalt and Monoclinic AgCl under Pressure
WANG Zuo-Cheng, CHE Li-Xin, LI Yan, CUI Tian, ZHANG Miao, NIU Ying-Li, MA Yan-Ming, ZOU Guang-Tian
2007, 21(3): 225-230 .   doi: 10.11858/gywlxb.2007.03.001
Abstract(1680) PDF(2)
Effect of High Pressure on Exoproteinase of Bacillus subtilis
XIE Hui-Ming, HUANG Xun-Duan, PAN Jian, ZENG Qing-Mei, WANG Hai-Xiang, JIANG Ye-Lei
2007, 21(1): 95-102 .   doi: 10.11858/gywlxb.2007.01.016
Abstract(1613) PDF(4)
Study on the Technique of Electric Gun Loading for One Dimensionally Planar Strain
WANG Gui-Ji, ZHAO Jian-Heng, TANG Xiao-Song, TAN Fu-Li, WU Gang, LIU Hai-Tao, KUANG Xue-Wu
2005, 19(3): 269-274 .   doi: 10.11858/gywlxb.2005.03.013
Abstract(1562) PDF(3)
Ferroelectric/Antiferroelectric Phase Transition Studies of PZT-95/5 Ceramics under Shock Loading
LIU Gao-Min, TAN Hua, YUAN Wan-Zong, WANG Hai-Yan, ZHANG Yi
2002, 16(3): 231-236 .   doi: 10.11858/gywlxb.2002.03.013
Abstract(1644) PDF(3)
Shock Wave Crystallization of Amorphous Alloys FeSiB, FeMoSiB and FeCuNbSiB
ZHAO He-Yun, KAN Jia-De, WANG Hai, LIU Zuo-Quan
2002, 16(2): 131-136 .   doi: 10.11858/gywlxb.2002.02.008
Abstract(1612) PDF(3)
High Temperature and High Pressure Synthesis and Study of 0212-Type Ca3Cu2O4+Cl2-y
YANG Da-Xiao, LIU Qing-Qing, GAO Wei-Bo, YU Wen, LI Feng-Ying, JIN Chang-Qing
2007, 21(1): 15-19 .   doi: 10.11858/gywlxb.2007.01.003
Abstract(1628) PDF(9)
Equation of state of detonation products for PETN explosive
ZHAO Yan-Hong, LIU Hai-Feng, ZHANG Gong-Mu
2009, 23(2): 143-149 .   doi: 10.11858/gywlxb.2009.02.011
Abstract(1879) PDF(3)
Study on Standard Cylinder Test Technology and Data Processing Method
SUN Zhan-Feng, LI Qing-Zhong, SUN Xue-Lin, WU Jian-Hua, TANG Tie-Gang
2008, 22(2): 160-166 .   doi: 10.11858/gywlxb.2008.02.009
Abstract(1731) PDF(1)
Numerical Simulation of Craters Produced by Projectile Hypervelocity Impact on Aluminum Targets
ZHANG Wei, MA Wen-Lai, MA Zhi-Tao, PANG Bao-Jun
2006, 20(1): 1-5 .   doi: 10.11858/gywlxb.2006.01.001
Abstract(1494) PDF(1)
New Method for Calculating Cold Energy, Cold Pressure and Cohesive Energy of Solids
RAN Xian-Wen, TANG Wen-Hui
2003, 17(1): 50-55 .   doi: 10.11858/gywlxb.2003.01.008
Abstract(1949) PDF(7)
Influence of Ultra High Pressure on Peroxidase Pectin Methyl Esterase and Soluble Protein in Litchi Fruit
HUANG Li, SUN Yuan-Ming, PAN Ke, CHEN Bai-Nuan, LIANG Di-Wen, CHEN Guo-Lian, YU Hong-Ying
2005, 19(2): 179-183 .   doi: 10.11858/gywlxb.2005.02.014
Abstract(1830) PDF(1)
Pressure Effects on the Elastic Properties of the hcp Lithuim
CHEN Chang-Bo, CUI Tian, LIU Zhi-Ming, ZOU Guang-Tian, WEI Meng-Fu, CHEN Chang-An
2005, 19(4): 331-336 .   doi: 10.11858/gywlxb.2005.04.008
Abstract(1588) PDF(9)
Research on Dynamic Compressive Testing and Mechanical Properties of Silicon Rubber
ZHAO Xi-Jin, LU Fang-Yun, LIN Yu-Liang
2004, 18(4): 328-332 .   doi: 10.11858/gywlxb.2004.04.007
Abstract(1847) PDF(4)
The Behavior of Diaspore under High Pressure and High Temperature
LI Ming, LI Li-Xin, YANG Wu-Ming, ZHANG Pei-Feng, GAO Chun-Xiao, HE Chun-Yuan, HAO Ai-Min, LI Yan-Chun, LI Xiao-Dong, LIU Jing, et al
2008, 22(3): 333-336 .   doi: 10.11858/gywlxb.2008.03.020
Abstract(2014) PDF(4)
Ballistic Limit Analysis for Projectiles Impacting on Dual Wall Structures at Hypervelocity
DING Li, ZHANG Wei, PANG Bao-Jun, LI Can-An
2007, 21(3): 311-315 .   doi: 10.11858/gywlxb.2007.03.016
Abstract(1683) PDF(1)
Electrical Property and Phase Transition of CdSe under High Pressure
HE Chun-Yuan, GAO Chun-Xiao, LI Ming, HAO Ai-Min, HUANG Xiao-Wei, YU Cui-Ling, ZHANG Dong-Mei, WANG Yue, ZOU Guang-Tian
2008, 22(1): 39-42 .   doi: 10.11858/gywlxb.2008.01.009
Abstract(1567) PDF(2)
An Eulerian Adaptive Mesh Refinement Method for Three Dimensional Elastic-Plastic Hydrodynamic Simulations
LIU Jun, HE Chang-Jiang, LIANG Xian-Hong
2008, 22(1): 72-78 .   doi: 10.11858/gywlxb.2008.01.016
Abstract(1676) PDF(2)
Constitutive Behaviors of a Silicone Rubber at High Strain Rates
LIN Yu-Liang, LU Fang-Yun, LU Li
2007, 21(3): 289-294 .   doi: 10.11858/gywlxb.2007.03.012
Abstract(1727) PDF(4)
Experimental Research on Glass Transition Temperature of Polymers in Compressed CO2
LI Zhi-Yi, MENG Ting-Yu, LIU Xue-Wu, WANG Yi, HU Da-Peng
2006, 20(3): 243-248 .   doi: 10.11858/gywlxb.2006.03.004
Abstract(1522) PDF(1)
Interface Treatment Method for Multi-Component Fluids Numerical Simulation
ZHANG Xue-Ying, ZHAO Ning, WANG Chun-Wu
2006, 20(3): 249-256 .   doi: 10.11858/gywlxb.2006.03.005
Abstract(1834) PDF(2)
Study on the Curves of Melting Temperature Pressure of Al, Cu and Pb
ZHENG Wei-Tao, ZHANG Rui-Lin
1993, 7(1): 42-46 .   doi: 10.11858/gywlxb.1993.01.006
Abstract(1685) PDF(2)
Initial Porosity Effect on the Shaped Charge Jet Behavior
LI Ru-Jiang, SHEN Zhao-Wu, WANG Feng-Ying
2008, 22(4): 445-448 .   doi: 10.11858/gywlxb.2008.04.019
Abstract(1728) PDF(4)
Modified Einstein Model to Consider Thermal Effect and Applied to Three Universal Equations of State
ZHANG Chao, SUN Jiu-Xun, TIAN Rong-Gang, LI Ming
2007, 21(3): 269-278 .   doi: 10.11858/gywlxb.2007.03.009
Abstract(1665) PDF(2)
A Study on Square Plate Dynamic Response under Underwater Explosion
WU Cheng, JIN Yan, LI Hua-Xin
2003, 17(4): 275-282 .   doi: 10.11858/gywlxb.2003.04.006
Abstract(1548) PDF(1)
Effect of High Pressure (HP) Treatments on Polyphenoloxidase (PPO) Activity in Pear Juices
ZENG Qing-Mei, PAN Jian, XIE Hui-Ming, YANG Yi, HUANG Xun-Duan
2004, 18(2): 144-148 .   doi: 10.11858/gywlxb.2004.02.009
Abstract(1622) PDF(2)
Factors Analysis of Debris Cloud's Shape of Hypervelocity Impact
TANG Mi, BAI Jing-Song, LI Ping, ZHANG Zhan-Ji
2007, 21(4): 425-432 .   doi: 10.11858/gywlxb.2007.04.016
Abstract(1617) PDF(3)
Study on Penetration of Concrete Targets by Ogive-Nose Steel Projectile
ZHOU Ning, REN Hui-Qi, SHEN Zhao-Wu, HE Xiang, LIU Rui-Chao
2007, 21(3): 242-248 .   doi: 10.11858/gywlxb.2007.03.004
Abstract(1627) PDF(2)
Influence of Ultra High Pressure (UHP) on Micro-organisms in Watermelon Juice
ZENG Qing-Mei, PAN Jian, XIE Hui-Ming, YANG Yi, XU Hui-Qun
2004, 18(1): 70-74 .   doi: 10.11858/gywlxb.2004.01.012
Abstract(1590) PDF(4)
Synchrotron Radiation Diffraction of Gallium Oxide under High Pressure
CUI Qi-Liang, TU Bao-Zhao, PAN Yue-Wu, WANG Cheng-Xin, GAO Chun-Xiao, ZHANG Jian, LIU Jing, ZOU Guang-Tian
2002, 16(2): 81-84 .   doi: 10.11858/gywlxb.2002.02.001
Abstract(1718) PDF(5)
Instantaneous Void between Thermo-Baric Charge and Warhead Shell under Launching
ZHANG Qi, CUI Jun-Mei, JI Yan-Hua, WEI Ke-Zhen, DANG Hai-Yan, QIN Bin
2008, 22(1): 48-52 .   doi: 10.11858/gywlxb.2008.01.011
Abstract(1863) PDF(9)
Study on the Intensity of the Cylindrical Vessel by the Inner Underwater Explosion Shock Wave
FAN Zi-Jian, SHEN Zhao-Wu, LIAO Xue-Yan, LIU Yuan-Dong
2008, 22(4): 402-408 .   doi: 10.11858/gywlxb.2008.04.011
Abstract(1753) PDF(4)
Pressure Calibration for the Sample Cell of YJ-3000t Multi-Anvil Press at High-Temperature and High-Pressure
SHAN Shuang-Ming, WANG Ri-Ping, GUO Jie, LI He-Ping
2007, 21(4): 367-372 .   doi: 10.11858/gywlxb.2007.04.006
Abstract(1739) PDF(4)
The Experimental and Theoretical Study on the Incident Pulse Shaping Technique
ZHAO Xi-Jin, LU Fang-Yun, WANG Wu, LI Ying-Hua, LIN Yu-Liang
2004, 18(3): 231-236 .   doi: 10.11858/gywlxb.2004.03.007
Abstract(1541) PDF(3)
Multi-Shock Hugoniot Equation of State of Liquid Carbon Monoxide Measured By an Optical Analysis Technique
ZHENG Xue-Ping, LIU Fu-Sheng, ZHANG Ming-Jian, CHEN Xian-Meng, SUN Yue
2008, 22(4): 419-424 .   doi: 10.11858/gywlxb.2008.04.014
Abstract(1553) PDF(19)
2D Numerical Simulation of Spallation in Three Steels with the Damage Function Model
PEI Xiao-Yang, LI Ping, DONG Yu-Bin
2007, 21(1): 71-76 .   doi: 10.11858/gywlxb.2007.01.012
Abstract(1469) PDF(2)
Research on Piezoresistance Sensitivity of Yb Film Sensor
TENG Lin, YANG Bang-Chao, DU Xiao-Song, ZHOU Hong-Ren, CUI Hong-Ling, XIAO Qing-Guo
2004, 18(1): 90-93 .   doi: 10.11858/gywlxb.2004.01.016
Abstract(1535) PDF(2)
Experimental Studies on Air Drag Coefficient of Spherical Tungsten Fragments
TAN Duo-Wang, WANG Guang-Jun, GONG Yan-Qing, GAO Ning
2007, 21(3): 231-236 .   doi: 10.11858/gywlxb.2007.03.002
Abstract(1734) PDF(11)
Mechanic Performances of Anti-Shoot Alumina Ceramic under Shock-Loading
DUAN Zhuo-Ping, GUAN Zhi-Yong, HUANG Feng-Lei
2003, 17(1): 29-34 .   doi: 10.11858/gywlxb.2003.01.005
Abstract(1596) PDF(3)
Effects of High Hydrostatic Pressure Treatment on Holothurians Autoenzyme Activity
XIA Yuan-Jing, LIU Zhi-Jun, LI Ning, CHEN Shu-Hua, DENG Ji-Song, LIU Xue-Wu, LI Zhi-Yi
2009, 23(5): 377-384 .   doi: 10.11858/gywlxb.2009.05.009
Abstract(1765) PDF(5)
First Principles Study of the Elastic, Electronic and Optical Properties of CdO under Pressure
HE Kai-Hua, ZHENG Guang, CHEN Gang, Lü Tao, WAN Miao, XIANG Dong, JI Guang-Fu
2007, 21(3): 299-304 .   doi: 10.11858/gywlxb.2007.03.014
Abstract(1960) PDF(2)
Long-Time Correlation Effects and Fractal Braonian Motion
WANG Ke-Gang, LONG Qi-Wei
1991, 5(1): 52-56 .   doi: 10.11858/gywlxb.1991.01.008
Abstract(1764) PDF(4)
A Numerical Analysis of the Influence of Buffer Material on Tantalum Flier Plate Velocity in the Hypervelocity Launcher
BAI Jing-Song, SHEN Qiang, TANG Mi, HU Jian-Bo, LUO Guo-Qiang, TAN Hua, ZHANG Lian-Meng
2008, 22(1): 19-24 .   doi: 10.11858/gywlxb.2008.01.005
Abstract(1768) PDF(2)
An Improved of Experimental Hypervelocity Launcher and Simulation
BAI Jing-Song, TANG Mi, HUA Jing-Song, LI Ping, TAN Hua
2007, 21(3): 253-258 .   doi: 10.11858/gywlxb.2007.03.006
Abstract(1508) PDF(2)
Effect of High Pressure on Seed Germination and Seedling Growth of Wheat
LIANG Ling, ZHANG Zheng-Mao, DUAN Xu-Chang, YANG Gong-Ming, LI Guo-Long
2005, 19(3): 241-246 .   doi: 10.11858/gywlxb.2005.03.009
Abstract(1565) PDF(2)
Expressions of Cold Specific Energy and Cold Pressure for Detonation Products
LI Yin-Cheng
2005, 19(1): 71-79 .   doi: 10.11858/gywlxb.2005.01.013
Abstract(1476) PDF(2)
PbTe Syntheses by High-Pressure and High-Temperature Approach
ZHU Pin-Wen, JIA Xiao-Peng, CHEN Hai-Yong, CHEN Li-Xue, LI Dong-Mei, GUO Wei-Li, MA Hong-An, REN Guo-Zhong, ZOU Guang-Tian
2002, 16(3): 183-187 .   doi: 10.11858/gywlxb.2002.03.004
Abstract(1462) PDF(3)
Numerical Method of Simulating Underwater Explosion on Unstructured Moving Grids
WANG Bing, XU Hou-Qian, TAN Jun-Jie
2008, 22(3): 291-297 .   doi: 10.11858/gywlxb.2008.03.012
Abstract(1899) PDF(4)
High Pressure Synthesis and Electric Transport Properties of La Filled CoSb3 Skutterudite Thermoelectric Materials
JIANG Yi-Ping, JIA Xiao-Peng, MA Hong-An, SU Tai-Chao, DONG Nan, DENG Le
2009, 23(2): 87-90 .   doi: 10.11858/gywlxb.2009.02.002
Abstract(1896) PDF(1)
An Investigation on the Entropy Argument in Detonation Models
HU Shao-Ming, LI Chen-Fang
2004, 18(4): 345-352 .   doi: 10.11858/gywlxb.2004.04.010
Abstract(1858) PDF(2)
Study on the Mechanism of PZT95/5 Powder Synthesis by Shock Waves
WANG Jun-Xia, YANG Shi-Yuan, HE Hong-Liang, WANG Jin
2007, 21(3): 322-326 .   doi: 10.11858/gywlxb.2007.03.018
Abstract(1489) PDF(4)

Hosted by:Topical Communitte of High Pressure,
Chinese Physical Society

Sponsored by:Institute of Fluid Physics,CAEP

Editor-in-Chief:ZOU Guangtian