Preparation, Characterization and Thermal Decomposition Properties of ANPyO@PDA Composites
ZHANG Gongzhen, HE Zhiwei, RAN Xianwen, CHENG Wei, WANG Yangwen, LI Zhiyuan, ZHANG He
2023, 37(6): 063402.
Acoustic and Elastic Properties of Polycrystalline Potassium Sodium Niobate under High Pressures
XIAO Likang, FENG Qiu, FANG Leiming, ZHOU Zhangyang, XIONG Zhengwei, LAN Jianghe, YANG Jia, LIU Yi, GAO Zhipeng
2023, 37(6): 061101.
Quantum Magnetic Measurement under High Pressure Based on Color Centres in Silicon Carbide
LIU Lin, WANG Junfeng, LIU Xiaodi
2023, 37(6): 060102.
Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Display Method:
Cover
Cover
2024, 38(2)  
PDF(8)
Abstract:
Contents
2024, 38(2): 1-2.  
HTML PDF(7)
Abstract:
preface
2024, 38(2): 1-1.  
HTML PDF(5)
Abstract:
Topics on High Pressure Superconductivity
The Experimental Progress on Binary Polyhydrides with High Temperature Superconductivity
WANG Xiancheng, ZHANG Jun, JIN Changqing
2024, 38(2): 020101.   doi: 10.11858/gywlxb.20230843
HTML PDF(9)
Abstract:

Recently, the experimental reports on near room temperature superconductivity of polyhydrides have attracted great attentions, and the theoretical and experimental exploration of new hydrogen-rich superconductors have become a research hotspot in the field of superconductivity. In this paper, we will give a detailed introduction to the experimental progress of binary polyhydride superconductors base on our works.

Progress of Experimental Research on Binary Hydride Superconductors under High Pressure
GUO Jianning, WANG Yulong, ZHU Chengcheng, HUANG Xiaoli, CUI Tian
2024, 38(2): 020102.   doi: 10.11858/gywlxb.20230742
HTML PDF(11)
Abstract:

Since the discovery of superconductivity by the famous physicist Onnes in 1911, people have constantly tried to improve the superconducting transition temperature, and the room-temperature superconductors have also been a century-old dream of human beings. In the course of nearly a hundred years of research, it has constantly updated people’s understanding of superconductivity, enhanced people’s confidence in further improving the superconducting transition temperature and exploring the mechanism of high temperature superconductivity that scientists have discovered copper based superconductors, iron based superconductors and McMillan limit superconductors (like MgB2). Recently, new hydrogen-rich compounds predicted theoretically and verified experimentally have shown great potential for high temperature superconductivity even room temperature superconductivity, becoming one of the best candidates for room temperature superconductors. It is worth noting that some sulfur hydrides and lanthanum hydrides have superconductivity of more than 200 K under high pressure, leading a research boom of hydrogen-rich compounds and some important theoretical and experimental results have emerged. This paper focuses on the current research progress of hydrogen-rich superconductors, summarizes the crystal structure properties and superconducting properties of new hydrogen-rich compounds from the perspective of different hydrogen structural units and hydrogen bonding characteristics. Five kinds of superconductors in hydrogen-rich compounds are introduced in this paper: interstitial type, ionic type, covalent type, cage type and molecular type, and some general rules affecting the superconducting transition temperature are summarized through comparative analysis of different types of hydrogen-rich compound superconductors. In the end, the current experimental problems to be solved and the future experimental direction are put forward.

Hydrogen-Rich Superconductors with High Critical Temperature under High Pressure
CHEN Yinqi, WANG Hongbo
2024, 38(2): 020103.   doi: 10.11858/gywlxb.20230842
HTML PDF(5)
Abstract:

Since the discovery of 4.2 K superconductivity in mercury, the search for room-temperature superconductivity has been a hot topic in the field of condensed matter physics. In recent years, scientists have discovered a series of high-temperature superconductivity, represented by covalent H3S (superconducting transition temperature Tc=203 K) and ionic LaH10 (Tc=250 K) and CaH6 (Tc=215 K) under high pressures. These works have successively broken superconducting temperature records, opening a new era in search for room-temperature superconductivity in hydrogen-rich compounds. This paper focuses on the progress of theoretical prediction, experimental synthesis, and characterization in binary and ternary hydrogen-rich superconductors with high critical temperature under high pressure. Furthermore, it addresses the challenges and potential avenues in the quest for room-temperature superconductors in hydrogen-rich compounds.

High-Temperature and High-Pressure Synthesis and Characterization of CuTe2 Single Crystal
SHI Lifen, WANG Ningning, LIU Ziyi, CUI Qi, ZHANG Xiaoxiao, LIU Qingyuan, SUI Yu, WANG Bosen, SUN Jianping, CHENG Jinguang
2024, 38(2): 020104.   doi: 10.11858/gywlxb.20230841
HTML PDF(9)
Abstract:

The 3d transition metal dichalcogenide MX2 (M=Mn, Fe, Co, Ni, Cu, Zn; X=S, Se, Te) with pyrite structure has attracted widespread attention due to their novel physical properties. Among them, the CuX2 (X=S, Se, and Te) is the only known superconducting system, for which the superconducting transition temperatures (Tc) are 1.5 K (CuS2), 2.4 K (CuSe2) and 1.3 K (CuTe2), respectively. Because they can only be synthesized under high-pressure and high-temperature (HPHT) conditions, earlier reports on CuTe2 are based on the polycrystalline samples and the detailed physical properties have not been reported on single crystal so far. Here, we synthesized high-quality CuTe2 single crystals under HPHT conditions at 5 GPa and 900 ℃ using the Kawai type 6/8 two-stage multianvil apparatus and performed detailed crystal, transport, magnetism, and specific heat measurements on its physical properties. The results showed that it belongs to the weakly coupled type-Ⅱ superconductor with Tc about 1.3 K. We systematically compared the relevant superconducting parameters of CuS2, CuSe2, and CuTe2 and further revealed the relationship between their density of state near the Fermi surface and superconducting properties.

Superconductivity of Solid Hydrogen under Extreme Pressure
DU Yu, SUN Ying, WANG Yanchao, ZHONG Xin
2024, 38(2): 020105.   doi: 10.11858/gywlxb.20230722
HTML PDF(9)
Abstract:

Hydrogen has the simplest crystal structure and physical properties at ambient pressure. As the pressure increases, hydrogen undergoes phase transition from insulator to metal, which being called metallic hydrogen. The numerical calculations also indicate that metallic hydrogen has high-temperature super-conductivity, thus the metal hydrogen is also known as the holy grail of physics subject. In this paper, the structural phase transition and superconducting transition temperature (Tc) of solid hydrogen under extreme high pressure 0.5–5.0 TPa were studied by first principles based on density functional theory, which may provide knowledge reserved for subsequent theoretical and experimental studies of metallic hydrogen and its superconductivity. The results show that the phase transition sequence of solid hydrogen under extreme high pressure is: I41/amd→oC12→cI16. For the same structure, with the increase of pressure, the electron-phonon-induced interaction decreases, the density of electronic states at the Fermi surface decreases, the vibration frequency increases, and the superconducting transition temperature changes. When the pressure is 2.0 TPa, the oC12 structure of solid hydrogen can obtain the highest Tc of 418 K (coulomb pseudopotential parameter μ*=0.10). This work provides a reference for further theoretical and experimental research on metallic hydrogen and its superconductivity.

Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure
MA Hao, CHEN Ling, JIANG Qiwen, AN Decheng, DUAN Defang
2024, 38(2): 020106.   doi: 10.11858/gywlxb.20230791
HTML PDF(8)
Abstract:

Using first principles density functional theory calculations, the crystal structure, electronic properties, and superconductivity characteristics of the ternary hydride Y-Si-H system under high pressure were investigated. The study revealed the existence of thermodynamically stable phases, including YSiH7, YSiH9, YSi2H12, and YSiH18, and thermodynamically metastable phases, namely YSi2H13, YSi2H14, and Y2SiH17. Electronic properties calculations showed that YSiH7 is insulator and YSi2H13 is semiconductor, while the remaining hydrides exhibit metallic properties. Superconducting transition temperatures (Tc) were estimated using the McMillan equation, with YSi2H12 hosting the highest Tc of 43.5 K at 100 GPa. The dynamic stable pressure of YSi2H14 can be reduced to 40 GPa, and its Tc is 23.8 K which is twice the highest Tc among binary Y-Si compounds, indicating that introducing H atom into Y-Si system can effectively increase the superconducting transition temperature. Y2SiH17 exhibits a Tc of 35.8 K at 100 GPa. Spectral function and electron-phonon coupling calculations suggested that in YSi2H14 and Y2SiH17, in addition to the H-induced superconductivity from mid-frequency vibrations, low-frequency vibrations of Y also play a significant role for superconductivity.

Prediction of Superconducting RbBSi  Compounds under Pressure
LIU Jinyu, CUI Xiangyue, LIU Ailing, CHENG Xiaoran, WANG Xingyu, WANG Yujia, ZHANG Miao
2024, 38(2): 020107.   doi: 10.11858/gywlxb.20230765
HTML PDF(7)
Abstract:

In this work, we have performed extensive swarm-intelligence structures searching simulations on the RbBSi compounds within the pressure range from 0 to 100 GPa. We have proposed three different phases of RbBSi, of which the stability, the electronic structure and the potential superconductivity were calculated by first-principles calculations. All predicted phases are thermodynamically and dynamically stable within the studied pressure range. The bands of the three phases crossing the Fermi level indicate the structures are all metallic. In addition,P4/nmm-RbBSi is a superconductor withTc of 14.4 K at ambient pressure. This work extends the understanding and potential application of alkali metal boron-silicide compounds in the field of superconductor.

Superconductivity in Novel Actinide Filled Boron Carbon Clathrates
ZHANG Wangying, LIU Chaoting, CHEN Rui, JIANG Chengao, LI Peifang, YAN Yan
2024, 38(2): 020108.   doi: 10.11858/gywlxb.20230766
HTML PDF(7)
Abstract:

Recently, a large number of theoretical and experimental studies have reported the emergence of a new sp3 clathrate XB3C3, where X represents different metal doping elements. The potential high-temperature superconducting materials have been discovered. New-typical cage material with both strong covalent and superconducting properties has important scientific research significance. In recent years, Ac discovered as the first element of the actinide series, AcH10 has a superconducting transition temperature (Tc) of 251 K, making it a potential room temperature superconductor. Therefore, in this article, first principles density functional theory is used to explore the crystal structure, lattice dynamics, electronic properties, and superconducting properties of AcB3C3, AcB2C4, and AcB4C2 doped with Ac elements based on the cage structures of XB3C3, XB2C4, and XB4C2. Research has found that AcB2C4 is difficult to synthesize within the 0–200 GPa range, and AcB3C3 exhibits an indirect bandgap semiconductor with a bandgap width of approximately 1.154 eV at atmospheric pressure. Based on the mechanical stability criterion, it can be inferred that AcB3C3 and AcB4C2 are brittle materials with high hardness and stiffness that are elastically stable. At the same time, AcB4C2 exhibits superconducting properties at ambient pressure, with Tc reaching 1.565 K. It has been observed that as pressure increases, the Tc value exhibits a trend of initially decreasing and then increasing. The superconducting mechanism is mainly influenced by intermediate-frequencies phonons, which then shift to the combination of low-frequencies and intermediate-frequencies phonons. This study provides guidance for the experimental synthesis of cage type compound superconducting materials and provides new ideas for exploring superconducting materials with high superconducting transition temperature.

First-Principles Study of the Dynamics in Face-Centered Cubic CeH9 and CeH10 under High Pressure
WANG Xiaoxue, DING Yuqing, WANG Hui
2024, 38(2): 020109.   doi: 10.11858/gywlxb.20230771
HTML PDF(11)
Abstract:

Rare-earth metal superhydrides have attracted much attention because of their high-temperature superconductivity. Since experimental measurements can only determine the structures of rare-earth metal atoms in the superhydrides, first-principles calculations have become an important complementary method for a comprehensive understanding on their structures and physical properties. In this work, the elasticity, lattice dynamics and proton dynamics properties of face-centered cubic CeH9 and CeH10 with different hydrogen contents but the same Ce lattice structure are investigated comparatively by first-principles calculations. The low hydrogen content is found to favor the elastic and phonon stabilization of face-centered cubic cerium superhydrides expanding to low pressures. At 100–140 GPa, CeH9 and CeH10 do not have significant proton diffusion at room temperature, but fully transform into the superionic state at 1500 K with diffusion coefficients of 1.6×10−4−1.2×10−4 cm2/s and 1.9×10−4−1.5×10−4 cm2/s; the diffusion coefficient is positively correlated with temperature and hydrogen content, but negatively correlated with pressure. The findings on the laws of pressure, temperature and hydrogen content affecting the structure and dynamics of cerium superhydrides are obtained, which can be used as a reference for the study of other superhydrides.

Dynamic Response of Matter
Simulation on Deformation Damage and Strain Rate Effect of Nb3Sn Composite Superconductors under Cycling Load at Extreme Low Temperature
HUANG Min, ZHU Benhao, XIAO Gesheng, QIAO Li
2024, 38(2): 024201.   doi: 10.11858/gywlxb.20230755
HTML PDF(7)
Abstract:

The study on damage and fracture of superconducting Nb3Sn under cyclic loading is an indispensable part of understanding the origin of the irreversible strain limit in Nb3Sn. This paper uses molecular dynamics simulation to investigate the fracture and deformation damage behavior of polycrystalline and single crystal Nb3Sn/Nb composite materials under cyclic loading at extremely low temperatures. The effects of strain rate on crack initiation and growth were carefully analyzed in both polycrystalline and single crystal Nb3Sn/Nb composite materials. The results indicate that slip occurs in single crystal Nb3Sn/Nb composite materials after cyclic loading. When the local stress at the slip band intersection exceeds the material strength, microcracks initiate at the slip band intersection, leading to fracture failure of the composite material. In contrast, the failure of polycrystalline Nb3Sn/Nb composite materials is due to the inability of stress at grain boundaries to relax under cyclic loading, which leads to the initiation of microcracks at the grain boundaries and intergranular fracture of the composite material. The analysis of the different damage, fracture, and failure mechanisms of polycrystalline and single crystal Nb3Sn/Nb composite materials at different strain rates shows that the fracture is brittle at low strain rates. As the strain rate rises, the number of slip bands in the single crystal Nb3Sn layer increases, enhancing the toughness of the single crystal Nb3Sn/Nb composite material. Conversely, the influence of grain boundaries on material strength decreases in polycrystalline materials as the strain rate increases. Moreover, polycrystalline Nb3Sn/Nb composite materials exhibit significant residual strength after local fracture of Nb3Sn at high strain rates. The research results will contribute to a better understanding of the damage evolution process of Nb3Sn/Nb composite materials under cyclic loading and offer theoretical guidance for optimizing material performance.

Testing and Numerical Analysis of the Anti-Blast Performance of Curved Steel-Concrete-Steel Composite Slab Using Headed Stud Connectors
CHEN Yingjie, LUO Cheng, ZHAO Chunfeng, HE Kaicheng
2024, 38(2): 024202.   doi: 10.11858/gywlxb.20230752
HTML PDF(13)
Abstract:

The curved steel-concrete-steel composite structure is a sandwiched structural member, consisting of two curved steel plates and concrete core. Headed studs are used to connect the steel plates and concrete to achieve the composite effect. This type of structure is promising for improving earthquake resistance and anti-blast performance, and has been applied in super high-rise structures, offshore platforms, and nuclear power facilities. This paper conducts experimental and numerical analysis to investigate the damage mode and mechanism of the curved steel-concrete-steel composite slab. Additionally, a parametrically analysis is conducted to explore the impact of blast distance, steel plate thickness, arch heights, and stud spacing on its anti-blast performance. The results indicate that the curved steel-concrete-steel composite structure performs well globally and retains their structural load-bearing capacity without failure after subjecting to blast loading. Increasing the blast distance and steel plate thickness can effectively reduce the concrete damage and the span deflection of the composite slab. Reducing arch heights causes a switch in concrete damage from compression damage to tensile damage, which is more severe and results in larger span deflection of the slab. Although reducing stud spacing increases the concrete plastic damage, it reduces the span deflection of the composite slab. The research results can contribute to the design and applications of curved steel-concrete-steel composite structures.

High Pressure Applications
Experimental Study on the Penetration of Zr-Based Amorphous Fragment into Carbon Fiber Composite Target and Post-Effect Aluminum Target
JIA Jie, ZHI Xiaoqi, HAO Chunjie, LI Jin, GUO Lu, LIU Xinghe
2024, 38(2): 025101.   doi: 10.11858/gywlxb.20230764
HTML PDF(6)
Abstract:

Zr-based amorphous fragment is an emerging active and efficient destructive element, which will undergo a deflagration reaction and fragmentation when its impact velocity reaches its threshold. The deflagration reaction and fragmentation could greatly increase its behind-armor destructive capability. In order to study the penetration damage mechanism and behind-armor destructive capability of Zr-based amorphous fragments on carbon fiber reinforced composites, a ballistic gun was used to load the spherical fragments to impact 8 and 6 mm thick carbon fiber composite targets at velocities ranging from 496.4 m/s to 1085.8 m/s and 571.4 m/s to 1103.9 m/s, respectively. Then a 2 mm thick LY12 aluminum target plate was arranged behind the target to measure the damage capability under different working conditions. The test results showed that the mainly failure mode of strike face was a coupling failure mode of compression failure and shear failure, and the main failure mode of its back face was a coupling failure mode of tensile failure and the de-sticky splitting of the layer. With the increase of the impact velocity, the proportion of the compression and shear coupling damage of the carbon fiber composite target plate was gradually increased, and the phenomenon of tensile breakage and delamination was gradually decreased. The ballistic ultimate velocities of the fragment for 8 and 6 mm thick carbon fiber composite target were 351.9 and 264.6 m/s, respectively. Behind-armor damage area of the fragment impacted on the 8 mm thick carbon fiber composite target was larger than that of the 6 mm thick carbon fiber target under the same impact velocity. The difference of behind-armor damage area impacted on 8 and 6 mm thick carbon fiber composite targets decreased with the increase of the impact velocity. The behind-armor damage ability of the fragment impacting on the carbon fiber composite target increased with the increase of the impact velocity.

Cook-Off Characteristics of HMX-Based Pressed Charges with Different Sizes
DONG Zelin, QU Kepeng, HU Xueyao, XIAO Wei, WANG Yixin
2024, 38(2): 025102.   doi: 10.11858/gywlxb.20230757
HTML PDF(6)
Abstract:

In order to study the effect of charge size on the cook-off characteristics of pressed charges, the calculation model of cook-off process was established for HMX-based pressed charges. The cook-off bombs with different charge sizes were simulated by Fluent software, the effect of charge size on the ignition position, response temperature and response time of pressed charges at different heating rates was calculated. It was found that, at the same heating rate, the response temperature of the charge center is the highest when the length-diameter ratio of HMX-based pressed explosive is 1.0, and the ignition temperature of the charge center decreases with the increase of the length-diameter ratio when the length-diameter ratio is greater than 1.0. When the length-diameter ratio increases to a certain extent, the response temperature of the charge center tends to be a constant. The ignition position of the charge is determined by both the heating rate and the size of the charge, and the ratio of heat transfer between the end face and the periphery face of the charge is inversely proportional to the square of the length-diameter ratio. When the heating rate is slow or the length-diameter ratio is small, the ignition position of the charge is located at the charge center; when the heating rate is fast and the length-diameter ratio is large, the ignition position of the charge is gradually away from the charge center.

Propagation Characteristics of Dual Explosive Sources Gas Explosion in Different Arrangements in H-Type Tunnel
YE Qing, WANG Weijian, JIA Zhenzhen, LIU Jialin
2024, 38(2): 025201.   doi: 10.11858/gywlxb.20230760
HTML PDF(5)
Abstract:

In order to investigate the propagation characteristics and thermal shock dynamics of multiple explosive sources gas explosion in complex roadways, numerical simulations were conducted using the Fluent software under three types of dual explosive sources arrangements in the H-type tunnel, including the same side, opposite positions, and diagonal positions. It was found that, after the two explosive sources in the tunnel were ignited simultaneously, its prodromic shock wave propagated along the unburned area of the tunnel. When the two shock waves encountered, the pressure superimposed while the impulse canceled out, and the propagation of flame was blocked by the pressure superposition area, resulting in a slowdown or reversal of the speed. Compared to the single source explosion, the dual explosive sources led to a higher pressure in specific areas such as contact lane, center of bifurcation, and sidewalls. Extreme pressure zones occur at the closed end of the roadway under same-side and diagonal arrangement conditions and at the center of the bifurcation under the opposite arrangement condition.

Experimental Study on the Safety Performance of Cylindrical Lithium-Ion Batteries under Local Indentation
LI Jie, ZHANG Yunlong, YUAN Boxing, TANG Yuanhui, HE Yongquan
2024, 38(2): 025301.   doi: 10.11858/gywlxb.20230754
HTML PDF(6)
Abstract:

Local compression of lithium-ion battery (LIB) is the primary form of damage during automotive collisions. In order to investigate the safety performance of 18650 LIBs under local indentation, a custom-made mechanical abuse experimental platform was used to conduct local indentation experiments. The failure mechanism was analyzed through progressive compression, and the failure process and thermal runaway evolution rules were obtained. The effects of the state of charge (SOC), loading velocity, indentation position and indenter size on the safety performance of LIBs were also discussed. The results show that the batteries exhibit a clear thermal runaway pattern under local indentation, and this phenomenon will not occur immediately after the failure, there is a certain reaction time. The SOC is positively correlated with the intensity of thermal runaway, and the failure time of the battery depends on the loading velocity. Moreover, thermal runaway is more likely to occur when the negative electrode end of the battery is damaged, and the temperature is higher when the damaged area is larger. Finally, based on the experimental results, some useful suggestions for the safety design of the battery packs were provided.

Precise Time-Delay Blasting Parameters of Stratified Single Blasting Well Completion
LI Xianglong, YAN Shiqian, WANG Jianguo, YAO Yongxin, HUANG Yuanming
2024, 38(2): 025302.   doi: 10.11858/gywlxb.20230748
HTML PDF(7)
Abstract:

To investigate effects of precise millisecond time delay detonation on the layered blasting in a single well completion, the millisecond time between holes within the layer was determined by theoretical calculation, and the JH-2 rock model was used in LS-DYNA software to simulate the precise delayed layered detonation in a single well completion blasting of large-diameter deep holes. Blasting effects of two types of delay time were compared, and the process of rock damage evolution in the wellbore was analyzed, finally field tests were conducted to verify the delay time parameters. The numerical calculation results revealed that through considering a comprehensive analysis of the dynamic rock damage process, the characteristic cross-sectional area of the blasting chamber, and the extent of rock damage, a delay time of 18 ms between layers of blasting proved to be more effective. The optimal delay time was determined by theoretical analysis and numerical simulations. Both field tests and numerical simulations demonstrated that the wellbore formation closely matched in the selected cross-sectional area characteristics, with a similarity ranging from 83.4% to 96.6% and an average similarity of 92.4%. This study highlights that the precise millisecond time delay layered blasting method, obtained through the combination of theoretical analysis, numerical simulation, and field tests (referred to as the “trinity analysis method”), providing reliable and accurate results. It holds practical value and is of significant importance for guiding real-world applications in single blasting well completion projects.

Experimental Study of the Effect of Shear Stress on Phase Transition in c-Axis CdS Single Crystal under Dynamic Loading
TANG Zhi-Ping, Gupta Y M
1989, 3(4): 290-297 .   doi: 10.11858/gywlxb.1989.04.005
[Abstract](13555) [PDF 8643KB](2210)
Abstract:
For a long time, the problem whether shear stress affects the phase transition initial pressure is not well solved. Duvall and Graham suggested that cadmium sulfide (CdS) crystal could be used to study the effect of shear stress on the initial pressure of phase transition in c-axis CdS single crystal specimens under high velocity impact systematically. The axial stress of initial phase transition measured is T=(3.250.1) GPa, corresponding to a mean pressure pT=(2.290.07) GPa, which agrees the value 2.3 GPa of static results quite well within the experimental error. The shear stress in this case, T=0.72 GPa, is as high as 31.5% of the mean pressure. This result shows that the mechanism of phase transition may be assumed only to relate to a critical mean pressure or critical thermodynamic state, and the effect of shear stress can be ignored.
Flattening of Cylindrical Shells under External Uniform Pressure at Creep
Shesterikov S A, Lokochtchenko A M
1992, 6(4): 247-253 .   doi: 10.11858/gywlxb.1992.04.002
[Abstract](9507) [PDF 2836KB](1966)
Abstract:
Experimental studies of the deformation of cylindrical shells under creep to fracture conditions are described in this paper. Analyses of three series of test shells are given and experimental and theoretical results are compared with each other.
The Generation of 90 GPa Quasi-Hydrostatic Pressures and the Measurements of Pressure Distribution
LIU Zhen-Xian, CUI Qi-Liang, ZOU Guang-Tian
1989, 3(4): 284-289 .   doi: 10.11858/gywlxb.1989.04.004
[Abstract](15381) [PDF 6073KB](2621)
Abstract:
Quasi-hydrostatic pressures up to 90 GPa were obtained at room temperature in the diamond cell by using solid argon as pressure medium. The pressure distribution was determined by measuring the special shift of the R1 line of ruby at different positions within the sample chamber. Experimental results showed that the pressure differences (p) between the pressures at each point within the chamber and the mean pressure (p) were very small, ratios of p/p were less than 1.5% when below 80 GPa. The shape of ruby R lines at 90 GPa is similar to that at ambient pressure. Thus, quasi-hydrostatic pressure near 100 GPa can be obtained by using solid argon as pressure medium. Moreover, the red shifts with pressures of the peak positions at 14 938 and 14 431 cm-1 in ruby emission spectra, were also examined. It concluded that the line, 14 938 cm-1, can be adopted in the pressure calibration.
A Study on Calculation of the Linear Thermal Expansion Coefficients of Metals
ZHENG Wei-Tao, DING Tao, ZHONG Feng-Lan, ZHANG Jian-Min, ZHANG Rui-Lin
1994, 8(4): 302-305 .   doi: 10.11858/gywlxb.1994.04.010
[Abstract](15960) [PDF 1350KB](1103)
Abstract:
Based on the expression of pressure at temperature T and in terms of the universal equation of state Debye model and the thermodynamic relations, a general expression for the calculation of the linear thermal expansion coefficients of metals is obtained. This formula applied to the calculation of Al, Cu, Pb. Calculated results are in good agreement with the experiments.
Development of Large Volume-High Static Pressure Techniques Based on the Hinge-Type Cubic Presses
WANG Hai-Kuo, HE Duan-Wei, XU Chao, GUAN Jun-Wei, WANG Wen-Dan, KOU Zi-Li, PENG Fang
2013, 27(5): 633-661.   doi: 10.11858/gywlxb.2013.05.001
[Abstract](14096) [PDF 12118KB](994)
Abstract:
The large volume press (LVP) becomes more and more popular with the scientific and technological workers in the high pressure area, because it could generate relatively higher pressure, provide better hydrostatic pressure and could be utilized in conjunction with in situ X-ray diffraction, neutron diffraction and ultrasonic measurement. There have been generally two LVP techniques to generate high-pressure: the double-anvil apparatus and the multi-anvil apparatus (MAA). Hinge-type cubic presses, as the main apparatus in china, have been widely used in the fields of both scientific research and diamond industry. However, for a long time past, the maximum pressure using the conventional one-stage anvil system for hinge-type cubic press is about 6 GPa, and the techniques about two-stage apparatus (octahedral press) that could generate pressure exceed 20 GPa is blank in our country. To a certain extent, the backwardness of the LVP technology in china restricts the development of high pressure science and related subjects. In recent years, we designed two kinds of one-stage high pressure apparatus and the two-stage apparatus based on hinge-type cubic-anvil press, the one-stage high pressure apparatus and the two-stage apparatus using cemented carbide as anvils could generate pressures up to about 9 GPa and 20 GPa respectively. This article mainly reviews the mechanics structure, design of cell assembly, pressure and temperature calibration, design and preparation of the sintered diamond anvils and pressure calibration to 35 GPa using sintered diamond as two-stage anvils about the one-stage high pressure apparatus and the two-stage apparatus designed in our laboratory.
Research on Deformation Shape of Deformable Warhead
GONG Bai-Lin, LU Fang-Yun, LI Xiang-Yu
2010, 24(2): 102-106 .   doi: 10.11858/gywlxb.2010.02.004
[Abstract](8306) [PDF 1765KB](313)
Abstract:
Basing on the detonation theory, the structure of the deformable warhead was simplified to be double layer cylindrical shells under the detonation. Plastic hinges were introduced into the loading section of the shell, which contacted with the deforming charge, and the deforming charge was divided into small segments accordingly. Loading and movement of these segments were analyzed. Deforming shape of the cylindrical shell under the loading with equal distribution was bulgy, and the displacement of shell segments was obtained. Deforming charge with different thickness, according to the displacement of the segment, was set up to realize the same displacement of the shell segments on the loading direction. The D-shape was achieved theoretically, and the shape of deforming charge was designed accordingly. Numerical simulation validated the feasibility of the designed plan. The results indicate that the deformable warhead with the new-designed deforming charge can realize the D-shape.
The Failure Strength Parameters of HJC and RHT Concrete Constitutive Models
ZHANG Ruo-Qi, DING Yu-Qing, TANG Wen-Hui, RAN Xian-Wen
2011, 25(1): 15-22 .   doi: 10.11858/gywlxb.2011.01.003
[Abstract](17174) [PDF 689KB](977)
Abstract:
The analyzed and calculated results indicate that the concrete failure strength will decrease under higher hydrostatic pressure, when the original failure parameters of HJC and RHT models implemented in LS-DYNA and AUTODYN are adopted. A new method is introduced which using the characteristic strength of concrete to confirm the modified failure parameters of HJC and RHT models. The same physical experiment of concrete penetration was simulated using the modified HJC and RHT failure parameters respectively, and the numerical results demonstrated that the RHT model matched the experiments much better. But the numerical results with the HJC modified failure parameters were not enough satisfied, because the third invariant of the deviated stress tensor was not considered in the HJC model.
Modification of Tuler-Butcher Model with Damage Influence
JIANG Dong, LI Yong-Chi, GUO Yang
2009, 23(4): 271-276 .   doi: 10.11858/gywlxb.2009.04.006
[Abstract](10741) [PDF 402KB](779)
Abstract:
A modificatin of Tuler-Butcher model including damage influence was presented, which was incorporated into a hydrodynamic one-dimensional finite difference computer code, to simulate the process of spall fracture of 45 steel and Al-Li alloy. The calculated results are in good agreement with experimental data, and shows the correctness of the model.
Recent Progresses in Some Fields of High-Pressure Physics Relevant to Earth Sciences Achieved by Chinese Scientists
LIU Xi, DAI Li-Dong, DENG Li-Wei, FAN Da-Wei, LIU Qiong, NI Huai-Wei, SUN Qiang, WU Xiang, YANG Xiao-Zhi, ZHAI Shuang-Meng, ZHANG Bao-Hua, ZHANG Li, LI He-Ping
2017, 31(6): 657-681.   doi: 10.11858/gywlxb.2017.06.001
[Abstract](10985) [FullText HTML](4693) [PDF 2527KB](4693)
Abstract:

In the last 10 years or so, nearly all major Chinese universities, schools and research institutes with strong Earth science programs showed strong interest in developing a new research branch of High-Pressure Earth Sciences.As a result, many young Chinese scientists with good training from the universities in the west countries were recruited.This directly led to a fast growing period of about 10 years for the Chinese high-pressure mineral physics research field.Here we take the advantage of celebrating the 30th anniversary of launching the Chinese Journal of High Pressure Physics, and present a brief summary of the new accomplishments made by the Chinese scientists in the fields of high-pressure mineral physics relevant to Earth sciences.The research fields include:(1) phase transitions in the lower mantle; (2) high spin-low spin transitions of iron in lower mantle minerals; (3) physical properties of the Earth core; (4) electrical measurements of rocks; (5) electrical measurements of minerals; (6) elasticity of minerals (especially equation of states); (7) high-pressure spectroscopic studies; (8) chemical diffusions in minerals; (9) ultrasonic measurements under high pressure; (10) physical properties of silicate melts; (11) geological fluids.In sum, the last 10 years have seen a rapid development of the Chinese high-pressure mineral physics, with the number of scientific papers increasing enormously and the impact of the scientific findings enhancing significantly.With this good start, the next 10 years will be critical and require all Chinese scientists in the research field to play active roles in their scientific activities, if a higher and advanced level is the goal for the Chinese mineral physics community.

Experiment and Numerical Simulation of Cylindrical Explosive Isostatic Pressing
CHEN Lang, LU Jian-Ying, ZHANG Ming, HAN Chao, FENG Chang-Gen
2008, 22(2): 113-117 .   doi: 10.11858/gywlxb.2008.02.001
[Abstract](13587) [PDF 1180KB](810)
Abstract:
The experiments of cylindrical explosive isostatic pressing were carried out. The internal temperatures in pressed explosives were measured by thermocouples. A thermal/structural coupled model of the explosive isostatic pressing was set up. The numerical simulations of cylindrical explosive were conducted. The calculated pressures and temperatures in explosives were given. The deformations,pressures and temperatures distribution were analyzed. The calculated results indicated that each surface center of the cylindrical explosive was sunken by isostatic pressing. During the isostatic pressing of cylindrical explosive, the internal temperature of the explosives increases, and the temperature and pressure are not uniform.
Perimeter-Area Relation of Fractal Island
LONG Qi-Wei
1990, 4(4): 259-262 .   doi: 10.11858/gywlxb.1990.04.004
[Abstract](15680) [PDF 1508KB](2347)
Abstract:
The relationship of perimeter with area (P/A relation) of fractal island is discussed. It is shown that Mandelbrot's fractal relation between Koch perimeter and area does not hold in the island with finite self-similar generations. This might be the reason why the fractal dimension measured with P/A relation varied with the length of yardstick in previous work.
Long-Distance Flight Performances of Spherical Fragments
TAN Duo-Wang, WEN Dian-Ying, ZHANG Zhong-Bin, YU Chuan, XIE Pan-Hai
2002, 16(4): 271-275 .   doi: 10.11858/gywlxb.2002.04.006
[Abstract](14190) [PDF 2450KB](873)
Abstract:
Using two-stage light gas gun and laser technique for velocity easurement, we studied the long-distance flight performances of spherical fragments with different materials and different diameters. The flight distance is 60~120 m, and the initial velocity is 1.2~2.2 km/s. The experimental results show that: (1) the velocity attenuation coefficient of spherical fragment is constant, and (2) the air drag coefficient is slightly affected by the initial velocity of spherical fragment, the air drag coefficient is a linear function of initial velocity.
Factors Analysis of Debris Cloud's Shape of Hypervelocity Impact
TANG Mi, BAI Jing-Song, LI Ping, ZHANG Zhan-Ji
2007, 21(4): 425-432 .   doi: 10.11858/gywlxb.2007.04.016
[Abstract](13329) [PDF 1599KB](722)
Abstract:
The numerical simulations of hypervelocity impact of Al-spheres on bumper at normal are carried out using the smoothed particle hydrodynamics (SPH) technique. The simulation results are compared with experimental results, and the simulated hole diameters of bumper and debris cloud are well consistent with experimental results. The effect of impact velocity, bumper thickness, projectile diameter, materials, shape of projectile, interval on produced debris cloud are further analyzed. Regarding the length and diameter as index, orthogonal design method is applied to analyze the primary and secondary relations on the debris cloud's index of the three factors, that is impact velocity, bumper thickness and projectile diameter. The results indicate that bumper thickness is the main influence factor of debris cloud's length while projectile diameter is the main influence factor of debris cloud's diameter.
Design of the Sample Assembly for Ultrasonic Measurement at High Pressure and 300 K in Six-Side Anvil Cell
WANG Qing-Song, WANG Zhi-Gang, BI Yan
2006, 20(3): 331-336 .   doi: 10.11858/gywlxb.2006.03.019
[Abstract](10839) [PDF 411KB](640)
Abstract:
We introduced briefly the principle of design of sample assembly for ultrasonic measurements at high pressure, and designed a new kind of sample assembly to measure the isothermal compression of Al and Cu at 300 K. Ideal quasi-hydrostatic loading was realized, and high-quality ultrasonic signals were obtained under high pressure. It was indicated that the design of sample assembly was reasonable. We analyzed in brief main uncertainty of ultrasonic measurement in six-side anvil cell at 300 K.
Detonation Shock Dynamics Calibration of JB-9014 Explosive at Ambient Temperature
TAN Duo-Wang, FANG Qing, ZHANG Guang-Sheng, HE Zhi
2009, 23(3): 161-166 .   doi: 10.11858/gywlxb.2009.03.001
[Abstract](14219) [PDF 794KB](813)
Abstract:
Detonation shock dynamics (DSD) is an approximation to the reactive Euler equations that allows numerically efficient tracking of curved detonation waves. The DSD parameters are the velocity curvature relation and the boundary angle. A computer code was developed to facilitate the calibration of these parameters for JB-9014 insensitive high explosive using the generalized optics model of DSD. Calibration data were obtained from measurements of the detonation velocities and fronts in JB-9014 rate sticks at ambient temperature, with diameters of 10~30 mm. The steady state detonation velocities and fronts predicted by these DSD parameters are in very good agreement with experiment.
Design and Temperature Calibration for Heater Cell of Split-Sphere High Pressure Apparatus Based on the Hinge-Type Cubic-Anvil Press
CHEN Xiao-Fang, HE Duan-Wei, WANG Fu-Long, ZHANG Jian, LI Yong-Jun, FANG Lei-Ming, LEI Li, KOU Zi-Li
2009, 23(2): 98-104 .   doi: 10.11858/gywlxb.2009.02.004
[Abstract](14758) [PDF 4054KB](818)
Abstract:
A new type of heater cell for the split-sphere high pressure apparatus based on the hinge-type cubic-anvil press was reported. This heating apparatus has the advantages of being simple, low cost, fast temperature rising, good heat insulation, and the temperature signal can be easily extracted. Carbon tube was used as a heating element for side-heating in our experiments. The size of the sample in the cell can reach 3 mm in diameter, and 7 mm in height. The relationship between the heating electric power and cell temperature was calibrated with Pt6%Rh-Pt30%Rt thermocouples under different pressures. The experimental results indicate that the temperature can reach 1 700 ℃ under the oil hydraulic pressure of 40 MPa (cell pressure is about 10 GPa).The temperature can keep stable for more than 2 h under a fixed power.
Shock Wave Physics: The Coming Challenges and Exciting Opportunities in the New Century-Introduction of the 12th International Conference of Shock Compression of Condensed Matter (SCCM-2001)
GONG Zi-Zheng
2002, 16(2): 152-160 .   doi: 10.11858/gywlxb.2002.02.012
[Abstract](14157) [PDF 500KB](862)
Abstract:
The 12th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter (SCCM-2001) was introduced. Papers presented in SCCM-2001 were surveyed and the recent progresses on shock compression of condensed matter were retrospected. The basic paradigms and the great achievements of the physics and mechanics of condensed matter at high dynamic pressure and stress were surveyed and revaluated. The coming challenges and exciting opportunities of shock wave physics in the 21 century were prospected.
The Constitutive Relationship between High Pressure-High Strain Rate and Low Pressure-High Strain Rate Experiment
CHEN Da-Nian, LIU Guo-Qing, YU Yu-Ying, WANG Huan-Ran, XIE Shu-Gang
2005, 19(3): 193-200 .   doi: 10.11858/gywlxb.2005.03.001
[Abstract](10736) [PDF 416KB](779)
Abstract:
It is indicated that the constitutive equations at high strain rates proposed by Johnson-Cook(J-C), Zerilli-Armstrong (Z-A) and Bodner-Parton (B-P) collapse the data of flow stress in compression, tension, torsion, and shear into simple curve with the scalar quatities 'effective' stress and 'effective' strain, however, the collapsed data of flow stress did not include the data in the planar shock wave tests. The SCG constitutive equation proposed by Steinberg et al for the planar shock wave tests is discussed, which describes the coupled high pressure and high strain rate effects on the plastic deformation of materials. Basing on the recent experiments at elevated temperatures and high strain rates and the shear strength measurements during shock loading, the flow stress for tungsten at high pressure and high strain rates is estimated with J-C and SCG constitutive equations, respectively. It is concluded that the J-C, Z-A and B-P constitutive equations may not be appropriate to describe the plastic behavior of materials at high pressure and high strain rates, comparing with SCG constitutive equation. It is emphasized that the physical background of the constitutive equation at high pressure and high strain rates is different from that at low pressure and high strain rates.
Explosive Shock Synthesis of Wurtzite Type Boron Nitride
TAN Hua, HAN Jun-Wan, WANG Xiao-Jiang, SU Lin-Xiang, LIU Li, LIU Jiang, CUI Ling
1991, 5(4): 241-253 .   doi: 10.11858/gywlxb.1991.04.001
[Abstract](11979) [PDF 4689KB](2143)
Abstract:
Reported in the paper are techniques of wurtzite type boron nitride (wBN) synthesis from graphite type BN (gBN) by means of shock compressions created via explosive detonation. Recovered samples after shock processing are treated with molten alkalis and hydrochloric acid. Despite that the domestic gBN materials we used are far inferior, both in the crystallinities and particle sizes, to those used in foreign countries for the purpose of shock synthesis of wBN, the yield of our wBN reaches 11 to 12 g per shot, with a convertion ratio over 50%; X-ray diffraction and x-ray fluorescence spectrometry analyses reveal that the total impurity content of this chemically extracted wurtzite type boron nitride product is less than 0.5%. Four different starting gBN from different manufacturers were used in the experiments to synthesis wBN under the same conditions of shock compressions. It is found that the yield of wBN is closely related to the crystallinity of the starting gBN materials. Specific area measurements and XRD analysis indicate that our wBN is a polycrystal super-fine powder material with average particle size of 0.1 m, which consists of many primary crystallites of 17.5 nm in dimension. Thermal stability of our wBN powder is characterized by the emergence of an exothermic peak in the atmospheric gas condition from DTA analysis. Initial temperature of this exothermic reaction is about 1 055 K and peak temperature 1 238 K.
Phase Evolution of Zr-Based Bulk Metallic Glass Prepared by Shock-Wave Quenching under High Temperature and High Pressure
YANG Chao, CHEN Wei-Ping, ZHAN Zai-Ji, JIANG Jian-Zhong
2007, 21(3): 283-288 .   doi: 10.11858/gywlxb.2007.03.011
[Abstract](13982) [PDF 534KB](706)
Abstract:
Phase evolution (PH) of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) prepared by shock-wave quenching has been studied under high-temperature and high-pressure using in situ synchrotron radiation energy-dispersive X-ray diffraction. The results show that the primarily precipitated phase is Zr2Be17 at applied pressures, but the subsequent PH processes are different. The crystallization temperature increases with pressure, but with a sudden drop at about 6.0 GPa. Compared with experimental results of the BMG prepared by water quenching, it can be concluded that crystallization temperature of the BMGs prepared by shock-wave quenching and water quenching all drop at the same pressure region, at which their PHs are different from those of other pressures. The different PHs and the drop of crystallization temperature may be attributed to that the BMG possesses different atomic configuration at different pressures.

Founded in 1987,    bimonthly

Hosted by:Topical Communitte of High Pressure,
Chinese Physical Society

Sponsored by:Institute of Fluid Physics,CAEP

Editor-in-Chief:ZOU Guangtian