高压力学方法及研究进展

周晓玲 王潘

周晓玲, 王潘. 高压力学方法及研究进展[J]. 高压物理学报, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715
引用本文: 周晓玲, 王潘. 高压力学方法及研究进展[J]. 高压物理学报, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715
ZHOU Xiaoling, WANG Pan. Methods and Research Progress in High Pressure Mechanics[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715
Citation: ZHOU Xiaoling, WANG Pan. Methods and Research Progress in High Pressure Mechanics[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715

高压力学方法及研究进展

doi: 10.11858/gywlxb.20230715
基金项目: 国家自然科学基金(12202126);广东省重大人才工程引进类项目(2021QN02C100)
详细信息
    作者简介:

    周晓玲(1990-),女,博士,副教授,主要从事高压物理研究. E-mail:zhouxiaoling@hit.edu.cn

  • 中图分类号: O521.3; O521.2

Methods and Research Progress in High Pressure Mechanics

  • 摘要: 高压力学研究在材料学领域和地学领域掀起了交叉科学研究的热潮,为高难度材料制备、材料力学性能改善、地震波各向异性成因及地球内部动力学过程研究等科学问题提供了解决方案。针对高压力学领域的研究方法,介绍了金刚石对顶砧结合X射线径向衍射法、旋转型金刚石对顶砧施加剪切应变法、高压扭转型压机施加剪切应变法、D-DIA型大腔体压机形变法和冲击压缩产生塑性形变法及其研究进展,展示了压应力与剪切力的耦合作用在调控材料的结构、性能及宏观力学行为方面的独特效应,揭示了高压力学研究的价值与应用潜力。

     

  • 图  用于X射线径向衍射实验的DAC及其原理示意图

    Figure  1.  DAC used for X-ray diffraction in a radial geometry and the schematic diagram

    图  旋转型DAC装置及原理示意图

    Figure  2.  Rotational DAC and the schematic diagram

    图  高压扭转型压机装置及原理示意图

    Figure  3.  High-pressure torsion apparatus and the schematic diagram

  • [1] CHEN B, LUTKER K, RAJU S V, et al. Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity [J]. Science, 2012, 338(6113): 1448–1451. doi: 10.1126/science.1228211
    [2] ZHOU X L, FENG Z Q, ZHU L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579(7797): 67–72. doi: 10.1038/s41586-020-2036-z
    [3] GAO Y, MA Y Z, AN Q, et al. Shear driven formation of nano-diamonds at sub-gigapascals and 300 K [J]. Carbon, 2019, 146: 364–368. doi: 10.1016/j.carbon.2019.02.012
    [4] LI X Y, JIN Z H, ZHOU X, et al. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains [J]. Science, 2020, 370(6518): 831–836. doi: 10.1126/science.abe1267
    [5] SINGH A K, BALASINGH C, MAO H K, et al. Analysis of lattice strains measured under nonhydrostatic pressure [J]. Journal of Applied Physics, 1998, 83(12): 7567–7575. doi: 10.1063/1.367872
    [6] SINGH A K. The lattice strains in a specimen (cubic system) compressed nonhydrostaticallyin an opposed anvil device [J]. Journal of Applied Physics, 1993, 73(9): 4278–4286. doi: 10.1063/1.352809
    [7] DUFFY T S, HEMLEY R J, MAO H K. Equation of state and shear strength at multimegabar pressures: magnesium oxide to 227 GPa [J]. Physical Review Letters, 1995, 74(8): 1371–1374. doi: 10.1103/PhysRevLett.74.1371
    [8] CHEN B, LUTKER K, LEI J L, et al. Detecting grain rotation at the nanoscale [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3350–3353. doi: 10.1073/pnas.1324184111
    [9] ZHOU X L, TAMURA N, MI Z Y, et al. Reversal in the size dependence of grain rotation [J]. Physical Review Letters, 2017, 118(9): 096101. doi: 10.1103/PhysRevLett.118.096101
    [10] MAO H K, SHU J F, SHEN G Y, et al. Elasticity and rheology of iron above 220 GPa and the nature of the Earth’s inner core [J]. Nature, 1998, 396(6713): 741–743. doi: 10.1038/25506
    [11] MARQUARDT H, MIYAGI L. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity [J]. Nature Geoscience, 2015, 8(4): 311–314. doi: 10.1038/ngeo2393
    [12] IMMOOR J, MIYAGI L, LIERMANN H P, et al. Weak cubic CaSiO3 perovskite in the Earth’s mantle [J]. Nature, 2022, 603(7900): 276–279. doi: 10.1038/s41586-021-04378-2
    [13] WENK H R, MATTHIES S, HEMLEY R J, et al. The plastic deformation of iron at pressures of the Earth’s inner core [J]. Nature, 2000, 405(6790): 1044–1047. doi: 10.1038/35016558
    [14] MERKEL S, MCNAMARA A K, KUBO A, et al. Deformation of (Mg,Fe)SiO3 post-perovskite and D'' anisotropy [J]. Science, 2007, 316(5832): 1729–1732. doi: 10.1126/science.1140609
    [15] MIYAGI L, KANITPANYACHAROEN W, KAERCHER P, et al. Slip systems in MgSiO3 post-perovskite: implications for D'' anisotropy [J]. Science, 2010, 329(5999): 1639–1641. doi: 10.1126/science.1192465
    [16] TSUJINO N, NISHIHARA Y, YAMAZAKI D, et al. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite [J]. Nature, 2016, 539(7627): 81–84. doi: 10.1038/nature19777
    [17] WU X, LIN J F, KAERCHER P, et al. Seismic anisotropy of the D'' layer induced by (001) deformation of post-perovskite [J]. Nature Communications, 2017, 8(1): 14669. doi: 10.1038/ncomms14669
    [18] IMMOOR J, MARQUARDT H, MIYAGI L, et al. Evidence for {100}<011> slip in ferropericlase in Earth’s lower mantle from high-pressure/high-temperature experiments [J]. Earth and Planetary Science Letters, 2018, 489: 251–257. doi: 10.1016/j.jpgl.2018.02.045
    [19] SINGH A K, KENNEDY G C. Uniaxial stress component in tungsten carbide anvil high-pressure X-ray cameras [J]. Journal of Applied Physics, 1974, 45(11): 4686–4691. doi: 10.1063/1.1663119
    [20] SINGH A K, BALASINGH C. Uniaxial stress component in diamond anvil high-pressure X-ray cameras [J]. Journal of Applied Physics, 1977, 48(12): 5338–5340. doi: 10.1063/1.323568
    [21] SINGH A K, MAO H K, SHU J F, et al. Estimation of single-crystal elastic moduli from polycrystalline X-ray diffraction at high pressure: application to FeO and iron [J]. Physical Review Letters, 1998, 80(10): 2157–2160. doi: 10.1103/PhysRevLett.80.2157
    [22] MERKEL S, MIYAJIMA N, ANTONANGELI D, et al. Lattice preferred orientation and stress in polycrystalline hcp-Co plastically deformed under high pressure [J]. Journal of Applied Physics, 2006, 100(2): 023510. doi: 10.1063/1.2214224
    [23] PERREAULT C, HUSTON L Q, BURRAGE K, et al. Strength of tantalum to 276 GPa determined by two X-ray diffraction techniques using diamond anvil cells [J]. Journal of Applied Physics, 2022, 131(1): 015905. doi: 10.1063/5.0073228
    [24] HUSTON L Q, COUPER S C, JACOBSEN M, et al. Yield strength of CeO2 measured from static compression in a radial diamond anvil cell [J]. Journal of Applied Physics, 2022, 132(11): 115901. doi: 10.1063/5.0097975
    [25] CHOKSHI A H, ROSEN A, KARCH J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials [J]. Scripta Metallurgica, 1989, 23(10): 1679–1683. doi: 10.1016/0036-9748(89)90342-6
    [26] SCHIØTZ J, DI TOLLA F D, JACOBSEN K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391(6667): 561–563. doi: 10.1038/35328
    [27] CONRAD H, NARAYAN J. Mechanism for grain size softening in nanocrystalline Zn [J]. Applied Physics Letters, 2002, 81(12): 2241–2243. doi: 10.1063/1.1507353
    [28] SCHIØTZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301(5638): 1357–1359. doi: 10.1126/science.1086636
    [29] ZENG Z D, ZENG Q S, GE M Y, et al. Origin of plasticity in nanostructured silicon [J]. Physical Review Letters, 2020, 124(18): 185701. doi: 10.1103/PhysRevLett.124.185701
    [30] SPEZIALE S, IMMOOR J, ERMAKOV A, et al. The equation of state of TaC0.99 by X-ray diffraction in radial scattering geometry to 32 GPa and 1073 K [J]. Journal of Applied Physics, 2019, 126(10): 105107. doi: 10.1063/1.5115350
    [31] WENK H R, LONARDELLI I, MERKEL S, et al. Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry [J]. Journal of Physics: Condensed Matter, 2006, 18(25): S933–S947. doi: 10.1088/0953-8984/18/25/S02
    [32] MIYAGI L, WENK H R. Texture development and slip systems in bridgmanite and bridgmanite+ferropericlase aggregates [J]. Physics and Chemistry of Minerals, 2016, 43(8): 597–613. doi: 10.1007/s00269-016-0820-y
    [33] IMMOOR J, MARQUARDT H, MIYAGI L, et al. An improved setup for radial diffraction experiments at high pressures and high temperatures in a resistive graphite-heated diamond anvil cell [J]. Review of Scientific Instruments, 2020, 91(4): 045121. doi: 10.1063/1.5143293
    [34] LEVITAS V I. High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments [J]. Physical Review B, 2004, 70(18): 184118. doi: 10.1103/PhysRevB.70.184118
    [35] JI C, LEVITAS V I, ZHU H Y, et al. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19108–19112. doi: 10.1073/pnas.1214976109
    [36] BLANK V, POPOV M, BUGA S, et al. Is C60 fullerite harder than diamond? [J]. Physics Letters A, 1994, 188(3): 281–286. doi: 10.1016/0375-9601(94)90451-0
    [37] LEVITAS V I, MA Y Z, SELVI E, et al. High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure [J]. Physical Review B, 2012, 85(5): 054114. doi: 10.1103/PhysRevB.85.054114
    [38] GAO Y, MA Y Z. Shear-driven chemical decomposition of boron carbide [J]. The Journal of Physical Chemistry C, 2019, 123(37): 23145–23150. doi: 10.1021/acs.jpcc.9b03599
    [39] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature [J]. Physics of the Earth and Planetary Interiors, 2004, 143/144: 593–600. doi: 10.1016/j.pepi.2003.06.004
    [40] BOVENKERK H P, BUNDY F P, HALL H T, et al. Preparation of diamond [J]. Nature, 1959, 184(4693): 1094–1098. doi: 10.1038/1841094a0
    [41] PÉREZ-PRADO M T, ZHILYAEV A P. First experimental observation of shear induced hcp to bcc transformation in pure Zr [J]. Physical Review Letters, 2009, 102(17): 175504. doi: 10.1103/PhysRevLett.102.175504
    [42] WU W Q, SONG M, NI S, et al. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion [J]. Scientific Reports, 2017, 7(1): 46720. doi: 10.1038/srep46720
    [43] BÜNZ J, BRINK T, TSUCHIYA K, et al. Low temperature heat capacity of a severely deformed metallic glass [J]. Physical Review Letters, 2014, 112(13): 135501. doi: 10.1103/PhysRevLett.112.135501
    [44] KANG J Y, KIM J G, PARK H W, et al. Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion [J]. Scientific Reports, 2016, 6(1): 26590. doi: 10.1038/srep26590
    [45] EDALATI K, MASUDA T, ARITA M, et al. Room-temperature superplasticity in an ultrafine-grained magnesium alloy [J]. Scientific Reports, 2017, 7(1): 2662. doi: 10.1038/s41598-017-02846-2
    [46] NGUYEN N T C, ASGHARI-RAD P, SATHIYAMOORTHI P, et al. Ultrahigh high-strain-rate superplasticity in a nano-structured high-entropy alloy [J]. Nature Communications, 2020, 11(1): 2736. doi: 10.1038/s41467-020-16601-1
    [47] CHONG Y, GHOLIZADEH R, TSURU T, et al. Grain refinement in titanium prevents low temperature oxygen embrittlement [J]. Nature Communications, 2023, 14(1): 404. doi: 10.1038/s41467-023-36030-0
    [48] WANG Y B, DURHAM W B, GETTING I C, et al. The deformation-DIA: a new apparatus for high temperature triaxial deformation to pressures up to 15 GPa [J]. Review of Scientific Instruments, 2003, 74(6): 3002–3011. doi: 10.1063/1.1570948
    [49] GIRARD J, AMULELE G, FARLA R, et al. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions [J]. Science, 2016, 351(6269): 144–147. doi: 10.1126/science.aad3113
    [50] WEHRENBERG C E, MCGONEGLE D, BOLME C, et al. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics [J]. Nature, 2017, 550(7677): 496–499. doi: 10.1038/nature24061
    [51] TURNEAURE S J, RENGANATHAN P, WINEY J, et al. Twinning and dislocation evolution during shock compression and release of single crystals: real-time X-ray diffraction [J]. Physical Review Letters, 2018, 120(26): 265503. doi: 10.1103/PhysRevLett.120.265503
    [52] CHEN S, LI Y X, ZHANG N B, et al. Capture deformation twinning in Mg during shock compression with ultrafast synchrotron X-ray diffraction [J]. Physical Review Letters, 2019, 123(25): 255501. doi: 10.1103/PhysRevLett.123.255501
    [53] MO M Z, TANG M X, CHEN Z J, et al. Ultrafast visualization of incipient plasticity in dynamically compressed matter [J]. Nature Communications, 2022, 13(1): 1055. doi: 10.1038/s41467-022-28684-z
  • 加载中
图(3)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  61
  • PDF下载量:  166
出版历程
  • 收稿日期:  2023-08-14
  • 修回日期:  2023-09-25
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回