压力环境对纳米晶金刚石石墨化的影响

于少楠 王文丹 何强 杨雨滔 唐名轩 马小娟 李星翰

于少楠, 王文丹, 何强, 杨雨滔, 唐名轩, 马小娟, 李星翰. 压力环境对纳米晶金刚石石墨化的影响[J]. 高压物理学报. doi: 10.11858/gywlxb.20240715
引用本文: 于少楠, 王文丹, 何强, 杨雨滔, 唐名轩, 马小娟, 李星翰. 压力环境对纳米晶金刚石石墨化的影响[J]. 高压物理学报. doi: 10.11858/gywlxb.20240715
YU Shaonan, WANG Wendan, HE Qiang, YANG Yutao, TANG Mingxuan, MA Xiaojuan, LI Xinghan. Effect of Pressure Environment on Graphitization of Nano-Crystalline Diamond[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240715
Citation: YU Shaonan, WANG Wendan, HE Qiang, YANG Yutao, TANG Mingxuan, MA Xiaojuan, LI Xinghan. Effect of Pressure Environment on Graphitization of Nano-Crystalline Diamond[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240715

压力环境对纳米晶金刚石石墨化的影响

doi: 10.11858/gywlxb.20240715
基金项目: 国家自然科学基金(41674008,11902276);四川省自然科学基金(2022NSFSC0340,2022NSFSC1802);西南交通大学原创性科研仪器设备研制项目(XJ2021KJZK052,2682023ZTPY009)
详细信息
    作者简介:

    于少楠(1999-),男,硕士研究生,主要从事高温高压下超硬材料合成与物性研究.E-mail:ysnan0@163.com

    通讯作者:

    王文丹(1981-),男,博士,副教授,主要从事高压下新材料合成及物性测试、新型超硬材料合成研究. E-mail:wendan.wang@swjtu.edu.cn

  • 中图分类号: O521.2; P619.241

Effect of Pressure Environment on Graphitization of Nano-Crystalline Diamond

  • 摘要: 高压下纳米金刚石石墨化对多晶金刚石烧结体的性能具有非常重要的影响。为此,在5~9 GPa、600~1500 ℃的压力温度范围,分别对平均晶粒尺寸为50 nm的纯纳米金刚石粉末和NaCl-纳米金刚石混合粉末的石墨化温度进行了研究。结合粉末X射线衍射的物相定量分析方法,分析了非静水压(纯金刚石粉末)和准静水压(NaCl-纳米金刚石混合粉末)下纳米金刚石在不同压力和温度下的石墨化程度。结果表明:5 GPa时,纯纳米金刚石粉末石墨化的起始温度在800 ℃以上,9 GPa时则在1000~1300 ℃之间;在约7 GPa的压力下,较短的保温时间内纳米金刚石的石墨化温度由非静水压环境中的1000 ℃提高到准静水压环境中的1500 ℃以上。

     

  • 图  真空热处理后纳米金刚石粉末的TEM图像(a)和XRD谱(b)

    Figure  1.  TEM image (a) and XRD pattern (b) of the nano-diamond powder after vacuum heat treatment

    图  纳米金刚石和微米金刚石的TG-DSC曲线

    Figure  2.  TG-DSC curves of nano-diamond and micro-diamond

    图  不同压力下600~1500 ℃处理0.5 min后实验样品的XRD谱以及石墨的质量分数

    Figure  3.  XRD patterns of the samples treated at different pressures and temperatures from 600 to 1500 ℃ for 0.5 min and the mass fraction of graphite in the samples recovered from different pressure and temperature conditions

    图  7 GPa、1300 ℃处理后样品的TEM图像

    Figure  4.  TEM image of the sample recovered from 7 GPa and 1300 ℃

    图  准静水压下高温处理后回收样品的XRD谱

    Figure  5.  XRD patterns of the samples treated at high temperature under quasi-hydrostatic pressure

    图  不同温度压力条件下经不同加热时间处理后样品的XRD谱

    Figure  6.  XRD patterns of the samples treated under various temperatures, pressures and holding time

    表  1  高温高压处理后回收样品中石墨的质量分数

    Table  1.   Mass fraction of graphite in the recovered samples after high-temperature and high-pressure treatment

    Raw material Pressure environment p/GPa T/℃ wg/%
    Pure NCD
    powder
    Non-hydrostatic
    pressure
    5 1000 2.6
    1300 19.1
    1500 22.3
    7 1000 3.3
    1300 8.0
    1500 12.1
    9 1000 0
    1300 6.8
    1500 7.5
    NaCl-NCD
    powder
    Quasi-hydrostatic
    pressure
    5 1000 0
    1300 3.8
    1500 17.6
    7 1000 0
    1300 0
    1500 0
    下载: 导出CSV

    表  2  不同保温时间处理后回收样品中石墨的质量分数

    Table  2.   Mass fraction of graphite in the recovered samples after different holding time treatment

    Raw
    material
    Pressure
    environment
    p/GPa T/℃ t/min wg/% Raw
    material
    Pressure
    environment
    p/GPa T/℃ t/min wg/%
    Pure NCD
    powder
    Non-
    hydrostatic
    pressure
    5 1500 0.5 22.3 NaCl-NCD
    powder
    Quasi-
    hydrostatic
    pressure
    5 1500 0.5 17.6
    1500 5.0 93.8 1500 5.0 58.9
    7 1300 0.5 8.0 7 1300 0.5 0
    1300 5.0 15.6 1300 5.0 0
    1500 0.5 12.1 1500 0.5 0
    1500 5.0 17.1 1500 5.0 34.2
    下载: 导出CSV
  • [1] BOVENKERK H P, BUNDY F P, HALL H T, et al. Preparation of diamond [J]. Nature, 1959, 184(4693): 1094–1098. doi: 10.1038/1841094a0
    [2] AKAISHI M, YAMAOKA S, UEDA F, et al. Synthesis of polycrystalline diamond compact with magnesium carbonate and its physical properties [J]. Diamond and Related Materials, 1996, 5(1): 2–7. doi: 10.1016/0925-9635(95)00332-0
    [3] BUNDY F P, BOVENKERK H P, STRONG H M, et al. Diamond-graphite equilibrium line from growth and graphitization of diamond [J]. The Journal of Chemical Physics, 1961, 35(2): 383–391. doi: 10.1063/1.1731938
    [4] QIAN J, VORONIN G, ZERDA T W, et al. High-pressure, high-temperature sintering of diamond-SiC composites by ball-milled diamond-Si mixtures [J]. Journal of Materials Research, 2002, 17(8): 2153–2160. doi: 10.1557/JMR.2002.0317
    [5] HANSEN N. Hall-Petch relation and boundary strengthening [J]. Scripta Materialia, 2004, 51(8): 801–806. doi: 10.1016/j.scriptamat.2004.06.002
    [6] ARMSTRONG R W. The influence of polycrystal grain size on several mechanical properties of materials [J]. Metallurgical Transactions, 1970, 1(5): 1169–1176. doi: 10.1007/BF02900227
    [7] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6923): 599–600.
    [8] BUNDY F P, HALL H T, STRONG H M, et al. Man-made diamonds [J]. Nature, 1955, 176(4471): 51–55. doi: 10.1038/176051a0
    [9] NAGENDRA NATH N S. The dynamical theory of the diamond lattice [J]. Proceedings of the Indian Academy of Sciences: Section A, 1935, 2(2): 143–152. doi: 10.1007/BF03035794
    [10] PHINNEY F S. Graphitization of diamond [J]. Science, 1954, 120(3114): 393–394. doi: 10.1126/science.120.3114.393
    [11] SEAL M. Graphitization of diamond [J]. Nature, 1960, 185(4712): 522–523. doi: 10.1038/185522a0
    [12] DAVIES G, EVANS T, DITCHBURN R W. Graphitization of diamond at zero pressure and at a high pressure [J]. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 1972, 328(1574): 413–427. doi: 10.1098/rspa.1972.0086
    [13] XU N S, CHEN J, DENG S Z. Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient [J]. Diamond and Related Materials, 2002, 11(2): 249–256. doi: 10.1016/S0925-9635(01)00680-X
    [14] QIAN J, PANTEA C, HUANG J, et al. Graphitization of diamond powders of different sizes at high pressure-high temperature [J]. Carbon, 2004, 42(12): 2691–2697.
    [15] GUAN S X, PENG F, LIANG H, et al. Fragmentation and stress diversification in diamond powder under high pressure [J]. Journal of Applied Physics, 2018, 124(21): 215902. doi: 10.1063/1.5051749
    [16] LI Q, ZHANG J W, LIU J, et al. Effect of stress state on graphitization behavior of diamond under high pressure and high temperature [J]. Diamond and Related Materials, 2022, 128: 109241. doi: 10.1016/j.diamond.2022.109241
    [17] QIAN J, PANTEA C, VORONIN G, et al. Partial graphitization of diamond crystals under high-pressure and high-temperature conditions [J]. Journal of Applied Physics, 2001, 90(3): 1632–1637. doi: 10.1063/1.1382832
    [18] 吕世杰, 罗建太, 苏磊, 等. 滑块式六含八超高压实验装置及其压力温度标定 [J]. 物理学报, 2009, 58(10): 6852–6857. doi: 10.3321/j.issn:1000-3290.2009.10.031

    LYU S J, LUO J T, SU L, et al. A slide-type multianvil ultrahigh pressure apparatus and calibrations of its pressure and temperature [J]. Acta Physica Sinica, 2009, 58(10): 6852–6857. doi: 10.3321/j.issn:1000-3290.2009.10.031
    [19] 戴逸, 王文丹, 法志湘, 等. 八面腔压机中一定尺寸的二级压砧上运行的最大组装 [J]. 物理学报, 2021, 70(14): 144702. doi: 10.7498/aps.70.20210006

    DAI Y, WANG W D, FA Z X, et al. Maximum multianvil cell assembly running on WC anvils with certain size [J]. Acta Physica Sinica, 2021, 70(14): 144702. doi: 10.7498/aps.70.20210006
    [20] 黄继武, 李周. 多晶材料X射线衍射 [M]. 北京: 冶金工业出版社, 2012: 95–116.
    [21] SEAL M. Graphitization and plastic deformation of diamond [J]. Nature, 1958, 182(4645): 1264–1267. doi: 10.1038/1821264a0
    [22] LIU J, ZHAN G, WANG Q, et al. Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure [J]. Applied Physics Letters, 2018, 112(6): 061901. doi: 10.1063/1.5016110
    [23] EDMOND J M, PATERSON M S. Strength of solid pressure media and implications for high pressure apparatus [J]. Contributions to Mineralogy and Petrology, 1971, 30(2): 141–160. doi: 10.1007/BF00372255
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  5
  • PDF下载量:  2
出版历程
  • 收稿日期:  2024-01-18
  • 修回日期:  2024-02-28
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回