高压、高应变率与低压、高应变率实验的本构关联性

陈大年 刘国庆 俞宇颖 王焕然 谢书港

陈大年, 刘国庆, 俞宇颖, 王焕然, 谢书港. 高压、高应变率与低压、高应变率实验的本构关联性[J]. 高压物理学报, 2005, 19(3): 193-200 . doi: 10.11858/gywlxb.2005.03.001
引用本文: 陈大年, 刘国庆, 俞宇颖, 王焕然, 谢书港. 高压、高应变率与低压、高应变率实验的本构关联性[J]. 高压物理学报, 2005, 19(3): 193-200 . doi: 10.11858/gywlxb.2005.03.001
CHEN Da-Nian, LIU Guo-Qing, YU Yu-Ying, WANG Huan-Ran, XIE Shu-Gang. The Constitutive Relationship between High Pressure-High Strain Rate and Low Pressure-High Strain Rate Experiment[J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 193-200 . doi: 10.11858/gywlxb.2005.03.001
Citation: CHEN Da-Nian, LIU Guo-Qing, YU Yu-Ying, WANG Huan-Ran, XIE Shu-Gang. The Constitutive Relationship between High Pressure-High Strain Rate and Low Pressure-High Strain Rate Experiment[J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 193-200 . doi: 10.11858/gywlxb.2005.03.001

高压、高应变率与低压、高应变率实验的本构关联性

doi: 10.11858/gywlxb.2005.03.001
详细信息
    通讯作者:

    陈大年

The Constitutive Relationship between High Pressure-High Strain Rate and Low Pressure-High Strain Rate Experiment

More Information
    Corresponding author: CHEN Da-Nian
  • 摘要: 指出Johnson-Cook(J-C)、Zerilli-Armstrong(Z-A)、Bodner-Parton(B-P)本构方程在一定条件下的适用性,表明对于低压、高应变率实验,单一曲线假定似乎可以采用。通过等效应力、等效应变,可以将不同应力状态下的流动应力函数采用统一的方程描述。然而,这些本构方程的确立,并不包括平面冲击波实验。对适合于平面冲击波实验的Steinberg-Cochran-Guinan(SCG)本构方程,讨论了其方程中所包含的高压与高应变率耦合效应。指出,以剪切模量度量的流动应力具有应变率相关性。基于温度效应的新发现以及直接测量平面冲击波流动应力的新进展,分别用J-C本构及SCG本构方程估算了钨材料在高压、高应变率加载下的流动应力。结果表明,采用J-C本构估算的流动应力仅在压力为10 GPa以下才能与实验数据相近,当压力高于10 GPa时,流动应力只能采用SCG本构估算。也指出了高压、高应变率本构方程与低压、高应变率本构方程所对应的不同物理背景。

     

  • Johnson G R, Cook W H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain-Rates and High Temperatures [A]. Porc 7th Int Nat Symposium on Ballistcs [C]. The Hague, The Netherlands, 1983.
    Zerilli F J, Armstrong R W. Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations [J]. J Appl Phys, 1987, 61: 1816.
    Bodner S R, Partom Y. Consitutive Equation for Elastic-Viscoplastic Srain-Hardening Materials [J]. J Appl Mech, 1975, 42: 385-389.
    Asay J R. Shock Wave Paradigms and New Challenges [A]. Furnish M D, Thadhani N N, Norie Y. Shock Compression of Condensed Mater-2001 [C]. New York: Melville, 2002. 26-35.
    Steinberg D J, Cochran S G, Guinan M W. A Constitutive Model for Metals Applicable at High-Strain Rate [J]. J Appl Phys, 1980, 53: 1498-1504.
    Steinberg D J, Lund C M. A Constitutive Model for Strain Rates from 10-4 to 106 s-1 [J]. J Appl Phys, 1989, 65: 1526-1533.
    Hua J S. Constitutive Equations for 93W at High Temperature and High Pressure [D]. Mianyang: China Academy of Engineering Physics, 1999. (in Chinese)
    华劲松. 高温高压下钨合金的本构方程研究 [D]. 绵阳: 中国工程物理研究院, 1999.
    Zhang J Y , Tan H, Yu J L. Determination of the Yield Strength of 93W Alloys by Using AC Techniques [J]. Chinese Journal of High Pressure Physics, 1997, 11(4): 254-259. (in Chinese)
    张江跃, 谭华, 虞吉林. 双屈服法测定93W合金的屈服强度 [J]. 高压物理学报, 1997, 11(4): 254-259.
    Xu B Y, Liu X S. Applied Elastic and Plastic Mechanics [M]. Beijing: Tsinghua University Press, 1995. 112. (in Chinese)
    徐秉业, 刘信声. 应用弹塑性力学 [M]. 北京: 清华大学出版社, 1995. 112.
    Meyers M A. Dynamic Behavior of Materials [M]. New York, Chichester, Brisbane, Toronto, Singapore: A Wiley-Interscience Publication John Wiley Sons Inc, 1994. 386-387.
    Millett J C F, Bourne N K, Rosenberg Z. On the Analysis of Transverse Stress Gauge Data from Shock Loading Experiments [J]. J Phys D: Appl Phys, 1996, 29: 2466-2472.
    Greenwood D, Forbes J, Garcia F, et al. Improvements in the Signal Fidelity of the Manganin Stress Gauge [A]. Furnish M D, Thadhani N N, Norie Y. Shock Compression of Condensed Matter-2001 [C]. New York: Melville, 2002. 1157-1159.
    Millett J C F, Bourne N K, Rosenberg Z, et al. Shear Strength Measurements in a Tungsten Alloy during Shock Loading [J]. J Appl Phys, 1999, 86: 6707-6709.
    Millett J C F, Bourne N K, Graylll G T, et al. The Response of TiAl Based Alloys to One Dimensional Shock Loading [J]. Acta Materiala, 2002, 50: 4801-4811.
    Graylll G T, Bourne N K, Millett J C F. Shock Response of Tantalum: Lateral Stress and Shear Strength througth the Front [J]. J Appl Phys, 2003, 94: 6430-6436.
    Zhou M, Clifton R J. Dynamic Constitutive and Failure Behavior of a Two-Phase Tungsten Composite [J]. J Appl Mech, 1997, 64: 487.
    Clifton R J. Response of Materials under Dynamic Loading [J]. Int J Solids Struct, 2000, 37: 105-113.
    Fruschy K J, Clifton R J. High-Temperature Pressure-Shear Plate Impact Experiments on OFHC Copper [J]. J Mech Phys Solids, 1998, 46: 1723-1743.
    Kanel G I, Ragorenov S V, Bogatch A A, et al. Spall Fracture Properties of Aluminum and Magnesium at High Temperature [J]. J Appl Phys, 1996, 79: 8310-8317.
    Frutschy K J, Clifton R J. High Temperature Pressure Shear Plate Impact Experiments and Results for Pure Tungsten Carbide [J]. Exp Mech, 1998, 38: 116-125.
  • 加载中
计量
  • 文章访问数:  10552
  • HTML全文浏览量:  735
  • PDF下载量:  1173
出版历程
  • 收稿日期:  2004-06-18
  • 修回日期:  2005-03-23
  • 发布日期:  2005-09-05

目录

    /

    返回文章
    返回