面向新世纪的冲击波物理学第12届凝聚介质冲击压缩国际会议简介

龚自正

引用本文:
Citation:

面向新世纪的冲击波物理学第12届凝聚介质冲击压缩国际会议简介

    通讯作者: 龚自正

Shock Wave Physics: The Coming Challenges and Exciting Opportunities in the New Century-Introduction of the 12th International Conference of Shock Compression of Condensed Matter (SCCM-2001)

    Corresponding author: GONG Zi-Zheng
  • 摘要: 对第12届凝聚介质冲击压缩国际会议(SCCM-2001)进行了简介和综合分析,介绍了凝聚介质冲击压缩近年来的新进展,回顾了20世纪动高压或应力下凝聚介质物理学和力学的基本范式和取得的成就,展望了冲击波物理学在21世纪所面临的挑战和机遇。
  • [1] Grugdkov Y A. Shock Wave Initiation of Pentaerythritol Tetranitrate Single Crystals: Mechanism of Anisotropic Sensitivity [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [2] Son S F. The Combustion of Explosives [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [3] KuKlja M M. How Point and Line Defects Affect Detonation Properties of Energetic Solids [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [4] Bastea M. New Physics at Extreme Conditions: Outstanding Results on Shock Compressed Molecular Fluids [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [5] Moore D S, Funk D J, Gahagan J H, et al. Sub-Picosecond Laser-Driven Shocks in Metals and Energetic Materials [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [6] Hoffman D. Plasma Physics with Intense Ion Beams to Investigate Properties of Matter under the Conditions of Extreme Energy Density [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [7] Hall C. Recent Advances in Quasi-Isentropic Compression Experiments (ICE) on the Sandia Z Accelerator [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [8] Andrew NG. Shock Waves and Plasma Physics [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [9] Gong Z Z, Li X J, Jing F Q. The Possible Composition and Thermal Structure of the Earths Lower Mantle and Core [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [10] Dremov V, Kutepov A, Petrovtsev A, et al. Equation of State and Phase Diagram of Iron [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [11] Meiron D. Coupled Eulerian-Lagranian Simulations of Detonation Induced Shock Response in Tantalum [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [12] Germann T C. Large-Scale Molecular Dynamics Simulations of Shock-Induced Plasticity and Phase Transformations [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [13] Tang Z P. Discrete Element Modeling for Shock Processes of Heterogeneous Materials [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [14] Roessig K. Meso-Scale Mechanics of Plastic Bonded Energetic Materials [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [15] Fried L E. Electronic Excitations in Shocked Solid Nitromethane [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [16] Ravichandran G. On the Conversion of Plastic Work into Heat during High-Strain-Rate Deformation [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [17] Ortiz M. Multiscale Modeling of Shock-Loaded Materials [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [18] Walker J D. New Directions and New Challenges in Analytical Modeling of Penetration Mechanics [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [19] Gupta S C. Experimental and Theoretical Investigations on Shock Wave Induced Phase Transitions [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [20] Setchel R E. Recent Progress in Understanding the Shock Response of Ferroelectric Ceramics [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [21] Sekine T. Shock-Induced Cubic Silicon Nitride and Its Properties [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [22] Benson d. Computational Modeling of the Shock Compression of Powders [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [23] Asay J. Shock Waves: Old Paradigms and New Challenges [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [24] Davison L. Traditional Analysis of Nonlinear Wave Propagation in Solids [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [25] Holian B. What Is a Shock Wave: The View from the Atomic Scale [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [26] Gilman J. Elasticity and Plasticity: Some Similarity; Much Difference [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [27] John Lee. Universal Role of Turbulence in Propagation of Strong Shock and Detonation Waves [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [28] Tarver C. What Is a Shock Wave to an Explosive Molecule? [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [29] Fortov V. Shock Compression of Condensed Non-Ideal Plasmas [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
    [30] Forbes J. The History of the APS Shock Compression of Condensed Matter [A]. Shock Compression of Condensed Matter-2001 [C]. Atlanta, 2001.
  • [1] . 高压物理学报2019-3目录. 高压物理学报, 2019, 33(3): 1-2.
    [2] 龚自正谢鸿森FEI Ying-Wei . 我国动高压物理应用于地球科学的研究进展. 高压物理学报, 2013, 27(2): 168-187. doi: 10.11858/gywlxb.2013.02.003
    [3] 王蓉蓉孙传范王婷婷胡小松张燕廖小军 . 超高压杀菌机制研究进展. 高压物理学报, 2012, 26(6): 700-708. doi: 10.11858/gywlxb.2012.06.016
    [4] 刘海风张弓木张其黎宋红州李琼赵艳红孙博宋海峰 . 氢氘物态方程研究进展. 高压物理学报, 2018, 32(5): 050101-1-050101-24. doi: 10.11858/gywlxb.20180587
    [5] 龙瑶陈军 . 高聚物黏结炸药的分子模拟进展. 高压物理学报, 2019, 33(3): 030104-1-030104-15. doi: 10.11858/gywlxb.20190755
    [6] 邵建立何安民王裴 . 微喷射现象数值模拟研究进展概述. 高压物理学报, 2019, 33(3): 030110-1-030110-15. doi: 10.11858/gywlxb.20190786
    [7] 张新刘永刚宋伟王志刚谢鸿森 . 静高压下液态物质的声速测量研究进展. 高压物理学报, 2013, 27(2): 239-244. doi: 10.11858/gywlxb.2013.02.011
    [8] 刘秀茹王明友张豆豆张晨然何竹陈丽英沈如洪时明 . 快速压致凝固法制备块体亚稳材料的研究进展. 高压物理学报, 2014, 28(4): 385-393. doi: 10.11858/gywlxb.2014.04.001
    [9] 龙芳羽史雪萍王蓉蓉姜斌董鹏胡小松 . 超高压技术降低食品过敏原的研究进展. 高压物理学报, 2013, 27(4): 604-608. doi: 10.11858/gywlxb.2013.04.022
    [10] 郑松林 . 晶体塑性有限元在材料动态响应研究中的应用进展. 高压物理学报, 2019, 33(3): 030108-1-030108-21. doi: 10.11858/gywlxb.20190725
    [11] 章中胡小松廖小军张燕 . 温压结合超高压处理对芽孢杀灭作用的研究进展. 高压物理学报, 2013, 27(1): 147-152. doi: 10.11858/gywlxb.2013.01.021
    [12] 柳雷毕延徐济安 . 极端条件下液体结构和物性的实验研究进展. 高压物理学报, 2016, 30(1): 7-19. doi: 10.11858/gywlxb.2016.01.002
    [13] 韩奇钢班庆初 . 小型超高压装置的设计原理及研究进展. 高压物理学报, 2015, 29(5): 337-346. doi: 10.11858/gywlxb.2015.05.003
    [14] 王青松王翔郝龙戴诚达柏劲松谭华 . 三级炮超高速发射技术研究进展. 高压物理学报, 2014, 28(3): 339-345. doi: 10.11858/gywlxb.2014.03.012
    [15] 马义刚李生才 . 应用Monte Carlo方法模拟爆轰产物状态方程的研究进展. 高压物理学报, 2005, 19(3): 275-278 . doi: 10.11858/gywlxb.2005.03.014
    [16] 王健康李尚升宋艳玲李露于昆鹏韩飞宿太超胡美华吴玉敏 . 有限元法在金刚石合成中的应用进展. 高压物理学报, 2019, 33(1): 013101-1-013101-7. doi: 10.11858/gywlxb.20180550
    [17] 林健宇罗斌强徐名扬宋卫东柏劲松裴晓阳于继东李平 . 铝弹丸超高速撞击防护结构的研究进展. 高压物理学报, 2019, 33(3): 030112-1-030112-33. doi: 10.11858/gywlxb.20190774
    [18] 范大伟李博陈伟许金贵匡云倩叶之琳周文戈谢鸿森 . 石榴子石族矿物状态方程研究进展. 高压物理学报, 2018, 32(1): 010101-1-010101-13. doi: 10.11858/gywlxb.20170597
    [19] 邓佶睿刘方明刘银娟刘进贺端威 . 透明陶瓷的超高压制备研究进展. 高压物理学报, 2018, 32(1): 010104-1-010104-1-15. doi: 10.11858/gywlxb.20170598
    [20] 王海阔贺端威许超管俊伟王文丹寇自力彭放 . 基于国产铰链式六面顶压机的大腔体静高压技术研究进展. 高压物理学报, 2013, 27(5): 633-661. doi: 10.11858/gywlxb.2013.05.001
  • 加载中
计量
  • 文章访问数:  3567
  • 阅读全文浏览量:  136
  • PDF下载量:  968
出版历程
  • 收稿日期:  2002-01-17
  • 录用日期:  2002-01-17
  • 刊出日期:  2002-06-05

面向新世纪的冲击波物理学第12届凝聚介质冲击压缩国际会议简介

    通讯作者: 龚自正
  • 1. 西南交通大学高温高压物理研究所,四川成都 610031;
  • 2. 西南交通大学理学院物理研究所,四川成都 610031

摘要: 对第12届凝聚介质冲击压缩国际会议(SCCM-2001)进行了简介和综合分析,介绍了凝聚介质冲击压缩近年来的新进展,回顾了20世纪动高压或应力下凝聚介质物理学和力学的基本范式和取得的成就,展望了冲击波物理学在21世纪所面临的挑战和机遇。

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回