A位有序四重钙钛矿氧化物:结构、物性和展望

王潇 刘哲宏 卢达标 皮茂材 潘昭 龙有文

王潇, 刘哲宏, 卢达标, 皮茂材, 潘昭, 龙有文. A位有序四重钙钛矿氧化物:结构、物性和展望[J]. 高压物理学报, 2024, 38(1): 010101. doi: 10.11858/gywlxb.20230785
引用本文: 王潇, 刘哲宏, 卢达标, 皮茂材, 潘昭, 龙有文. A位有序四重钙钛矿氧化物:结构、物性和展望[J]. 高压物理学报, 2024, 38(1): 010101. doi: 10.11858/gywlxb.20230785
WANG Xiao, LIU Zhehong, LU Dabiao, PI Maocai, PAN Zhao, LONG Youwen. A-Site Ordered Quadruple Perovskite Oxides: Structures, Properties and Prospects[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010101. doi: 10.11858/gywlxb.20230785
Citation: WANG Xiao, LIU Zhehong, LU Dabiao, PI Maocai, PAN Zhao, LONG Youwen. A-Site Ordered Quadruple Perovskite Oxides: Structures, Properties and Prospects[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010101. doi: 10.11858/gywlxb.20230785

A位有序四重钙钛矿氧化物:结构、物性和展望

doi: 10.11858/gywlxb.20230785
基金项目: 国家重点研发计划(2021YFA1400300);国家自然科学基金(11934017,12261131499,11921004,12304159, 12204516);北京市自然科学基金(Z200007);中国科学院先导B项目(XDB33000000)
详细信息
    作者简介:

    王 潇(1991-),男,博士,博士后,主要从事高压极端条件材料制备与物性研究. E-mail:wangxiao@iphy.ac.cn

    通讯作者:

    龙有文(1979-),男,博士,研究员,主要从事新型高压磁电量子功能材料研究. E-mail:ywlong@iphy.ac.cn

  • 中图分类号: O469; O521.2

A-Site Ordered Quadruple Perovskite Oxides: Structures, Properties and Prospects

  • 摘要: A位有序四重钙钛矿氧化物$\rm AA'_3 B^{\;}_4 O^{\;}_{12} $具有丰富的物理性质和优异的材料性能,是当今凝聚态物理和材料科学的重要研究对象。相较于简单的ABO3型钙钛矿,在A位有序四重钙钛矿氧化物中,3/4的A位离子被过渡金属离子A′所取代,形成了1∶3的A/A′有序结构。因此,A位有序四重钙钛矿氧化物中的磁-电相互作用不再局限于B位子晶格内部,新颖的A′-A′、A′-B等磁-电相互作用也随之产生,从而展现出许多新现象和新物理机制,并为未来的实际应用提供了材料基础。围绕几种具有代表性的A位有序四重钙钛矿氧化物,回顾其研究脉络,对其晶体结构、物理性质和内在机理进行简单介绍,并对这类材料体系的研究方向和应用前景做出一些展望。

     

  • 图  (a) $\rm ABO^{\;}_3 $型钙钛矿、(b) A位有序四重钙钛矿$\rm AA'_3 B^{\;}_4 O^{\;}_{12} $和(c) A位有序四重钙钛矿$\rm AA'_3 B^{\;}_2 B'_2 O^{\;}_{12} $的结构示意图

    Figure  1.  Schematic crystal structures of (a) $\rm ABO^{\;}_3 $ perovskite, A-site ordered perovskites (b) $\rm AA'_3 B^{\;}_4 O^{\;}_{12} $ and (c) $\rm AA'_3 B^{\;}_2 B'_2 O^{\;}_{12} $

    图  (a) Aʹ的氧配位示意图(黄色表示Aʹ离子,红色表示O离子,颜色由深至浅表示Aʹ―O键长由短至长),(b) AʹO4平面四边形晶体场示意图(10Dqd轨道(t2geg)的劈裂,Δt2g、Δeg分别为t2gxyxzyz)和egx2y2z2r2)轨道的劈裂),(c) BO6八面体的倾斜(蓝色表示B离子,红色表示O离子)

    Figure  2.  (a) Coordination of the Aʹ site, the Aʹ ion is displayed in yellow, the O anions are displayed in red, and the different colors of O indicate the different Aʹ―O bond lengths; (b) crystal field of AʹO4 square planar, the 10Dq represents the split of the d orbit (t2g, eg), the Δt2g and Δeg represent the split of the t2g (xy, xz, yz) and eg (x2y2, z2r2) orbits, respectively; (c) tilt of the BO6 octahedra, the B ions are displayed in blue, and the O anions are displayed in red

    图  (a) CaCu3Ti4O12εʹ和tan δ随温度的变化关系(2条曲线分别为2个样品的测试数据)[27];(b) 不同频率下εʹ、tan δω0随温度的变化关系[27];(c) εʹ随频率的变化关系;(d) 弛豫时间(τ)随温度的变化关系(10 K的τ为预测值)[29]

    Figure  3.  (a) Temperature-dependent εʹ and tan δ of two CaCu3Ti4O12 samples[27]; (b) temperature-dependent εʹ, tan δ and ω0 at selected frequencies[27]; (c) frequency-dependent εʹ of CaCu3Ti4O12 and (d) the relaxation time (τ) as a function of 1/T, the legend also gives the estimated τ at 10 K[29]

    图  (a) 本征与非本征因素构成的等效电路示意图,(b) 该等效电路的εʹ和εʹʹ随频率的变化曲线[33]

    Figure  4.  (a) Equivalent circuit that describes the main features of the dielectric response; (b) frequency-dependent dielectric response[33]

    图  (a) CaCu3Ti4O12多晶表面形貌,(b) 晶粒内和晶粒间的I-V曲线[42]

    Figure  5.  (a) Surface morphology with patterned gold electrodes of CaCu3Ti4O12; (b) I-V characteristics within single grains and across individual grain boundaries[42]

    图  LaCu3Fe4O12TN=393 K的多种转变:(a) Cu―O键、Fe―O键的键长随温度的变化关系;(b) 体积随温度的变化关系;(c) 穆斯堡尔(Mössbauer)谱的光吸收随运动速度的变化关系;(d) 磁化率(χ)和电阻率(ρ)随温度的变化曲线(插图为磁矩M随温度的变化曲线)[7]

    Figure  6.  Multiple transitions of LaCu3Fe4O12 at TN=393 K: (a) temperature-dependent Cu―O and Fe―O bond lengths; (b) temperature-dependent negative thermal expansion; (c) Mössbauer spectra, the velocity-dependent absorption; (d) temperature-dependent magnetic susceptibility (χ) and resistivity (ρ), the inset displays the temperature-dependent magnetization (M)[7]

    图  (a) LnCu3Fe4O12的电荷有序形式总览;(b) LnCu3Fe4O12在相变温度附近的体积随温度的变化曲线;(c) Ln和Fe的键合状态(d为价键求和(bond valence sum,BVS)计算得到的价态与自由离子价态之差,d < 0表示欠键合,d > 0表示过键合)[61]

    Figure  7.  (a) An overview of charge order of LnCu3Fe4O12; (b) temperature-dependent volume of LnCu3Fe4O12; (c) correlation between dLn and dFe (d is the difference between bond valence sum (BVS) and ionic valence state. d < 0 indicates underbonding and d > 0 indicates overbonding.)[61]

    图  (a) ACu3Fe4O12体系电荷有序能级示意图[62];(b) 当体积为原体积的102%、100%、96%、90%、88%、80%、78%时的电荷分布(不同颜色表示不同位置电荷相对密度差异Δn(r))[63]

    Figure  8.  (a) Schematic diagram of charge order in the ACu3Fe4O12 compounds[62]; (b) computed charge densities for volumes of 102%, 100%, 96%, 90%, 88%, 80% and 78%, the colors represent the charge density differences Δn(r)[63]

    图  (a) PbCoO3[66]、(b) Mn2O3[67]以及(c) Fe2O3[68]的相图

    Figure  9.  Phase diagrams of (a) PbCoO3[66], (b) Mn2O3[67], and (c) Fe2O3[68]

    图  10  磁电耦合多铁性材料中磁场对电极化的调控以及电场对磁化的调控示意图[75]

    Figure  10.  Controlling of polarization/magnetization by magnetic/electric field in magnetoelectric multiferroics[75]

    图  11  LaMn3Cr4O12的晶格结构、NPD图谱和磁结构[9]

    Figure  11.  Crystal structure, NPD pattern and magnetic structure of LaMn3Cr4O12[9]

    图  12  LaMn3Cr4O12在不同磁场下的热释电电流、电极化和介电常数随温度的变化关系[9]

    Figure  12.  Pyroelectric current, electric polarization and dielectric constant of LaMn3Cr4O12 under selected magnetic fields[9]

    图  13  BiMn3Cr4O12通过不同的极化过程实现的 4 种极化态[86]

    Figure  13.  Four states of BiMn3Cr4O12 from different poling procedures[86]

    图  14  5 K时SmMn3Cr4O12在不同磁场和电场配置下的电极化随磁场大小的变化关系[88]

    Figure  14.  Magnetic field dependent polarization of SmMn3Cr4O12 at 5 K measured at H//E and HE configurations[88]

    图  15  电极化在罗马面上的转动路径和实验测量结果(ψ为外加磁场H与极化电场E的夹角)[92]

    Figure  15.  Induced fundamental polarization trajectories on Roman surface and related experiment results, ψ represents the angle between H and E[92]

    图  16  (a) La0.7Sr0.3MnO3的能带示意图,(b) 自旋分辨光电子能谱测量结果[97]

    Figure  16.  (a) Schematic band structure and (b) spin-resolved photoemission spectra of La0.7Sr0.3MnO3[97]

    图  17  Sr2FeMoO6的电阻率和磁化强度随磁场的变化关系[99]

    Figure  17.  Field-dependent electrical resistivity and magnetization of Sr2FeMoO6[99]

    图  18  CaCu3Fe2Re2O12的 (a) 磁化率χ随温度的变化曲线、(b) 电阻率和磁化强度随磁场的变化曲线以及 (c) 能带计算结果[11]

    Figure  18.  (a) Temperature-dependent magnetic susceptibility, (b) field-dependent magnetization and magnetoresistance, and (c) calculated band structure from first principles of CaCu3Fe2Re2O12[11]

    图  19  LaCu3Fe2Re2O12的 (a) 磁化率随温度的变化曲线、(b) 磁化强度随磁场的变化曲线、(c) 能带计算结果以及 (d) 半金属综合性能指标η与其他半金属氧化物的比较[101]

    Figure  19.  (a) Temperature-dependent magnetic susceptibility, (b) field-dependent magnetization, (c) calculated band structure from first principles and (d) overall performance factor η of LaCu3Fe2Re2O12 (The η values of some selected half-metallic oxides are displayed for comparison.)[101]

    图  20  ACu3Fe2Os2O12体系不同 A 位离子对费米面的调控[108]

    Figure  20.  Regulation of the Fermi surface by the nonmagnetic A-site ions in the ACu3Fe2Os2O12 system[108]

    图  21  全过渡金属A位有序四重钙钛矿氧化物$\rm AA'_3 B^{\;}_2 B'_2 O^{\;}_{12} $丰富的磁-电相互作用(红色代表氧离子)

    Figure  21.  Multiple magnetic and electric interactions in the transition-metal-only A-site ordered quadruple perovskite oxide, the oxygen ions are shown in red

  • [1] CARPENTER M A, HOWARD C J. Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn-Teller transitions in ABX3 perovskites. Ⅰ. theory [J]. Acta Crystallographica Section B, 2009, 65(Pt 2): 134−146.
    [2] CARPENTER M A, HOWARD C J. Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn-Teller transitions in ABX3 perovskites. Ⅱ. application [J]. Acta Crystallographica Section B, 2009, 65(Pt 2): 147−159.
    [3] VASALA S, KARPPINEN M. A2BʹBʹʹO6 perovskite: a review [J]. Progress in Solid State Chemistry, 2015, 43(1/2): 1–36.
    [4] ANDERSON P W. More is different: broken symmetry and the nature of the hierarchical structure of science [J]. Science, 1972, 177(4047): 393–396. doi: 10.1126/science.177.4047.393
    [5] DESCHANVRES A, RAVEAU B, TOLLEMER F. Substitution of copper for a divalent metal in perovskite-type titanates [J]. Bulletin de la Société Chimique de France, 1967, 11: 4077–4078.
    [6] SUBRAMANIAN M A, LI D, DUAN N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases [J]. Journal of Solid State Chemistry, 2000, 151(2): 323–325. doi: 10.1006/jssc.2000.8703
    [7] LONG Y W, HAYASHI N, SAITO T, et al. Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite [J]. Nature, 2009, 458(7234): 60–63. doi: 10.1038/nature07816
    [8] ZHAO J F, GAO J C, LI W M, et al. A combinatory ferroelectric compound bridging simple ABO3 and A-site-ordered quadruple perovskite [J]. Nature Communications, 2021, 12(1): 747. doi: 10.1038/s41467-020-20833-6
    [9] WANG X, CHAI Y S, ZHOU L, et al. Observation of magnetoelectric multiferroicity in a cubic perovskite system: LaMn3Cr4O12 [J]. Physical Review Letters, 2015, 115(8): 087601. doi: 10.1103/PhysRevLett.115.087601
    [10] DENG H S, LIU M, DAI J H, et al. Strong enhancement of spin ordering by A-site magnetic ions in the ferrimagnet CaCu3Fe2Os2O12 [J]. Physical Review B, 2016, 94(2): 024414. doi: 10.1103/PhysRevB.94.024414
    [11] ZENG Z, GREENBLATT M, SUBRAMANIAN M A, et al. Large low-field magnetoresistance in perovskite-type CaCu3Mn4O12 without double exchange [J]. Physical Review Letters, 1999, 82(15): 3164–3167. doi: 10.1103/PhysRevLett.82.3164
    [12] CHEN W T, MIZUMAKI M, SEKI H, et al. A half-metallic A- and B-site-ordered quadruple perovskite oxide CaCu3Fe2Re2O12 with large magnetization and a high transition temperature [J]. Nature Communications, 2014, 5: 3909. doi: 10.1038/ncomms4909
    [13] YAGI S, YAMADA I, TSUKASAKI H, et al. Covalency-reinforced oxygen evolution reaction catalyst [J]. Nature Communications, 2015, 6: 8249. doi: 10.1038/ncomms9249
    [14] OVSYANNIKOV S V, ZAINULIN Y G, KADYROVA N I, et al. New antiferromagnetic perovskite CaCo3V4O12 prepared at high-pressure and high-temperature conditions [J]. Inorganic Chemistry, 2013, 52(20): 11703–11710. doi: 10.1021/ic400649h
    [15] PATINO M A, ROMERO F D, GOTO M, et al. Multi- k spin ordering in CaFe3Ti4O12 stabilized by spin-orbit coupling and further-neighbor exchange [J]. Physical Review Research, 2021, 3(4): 043208. doi: 10.1103/PhysRevResearch.3.043208
    [16] BOCHU B, DESCHIZEAUX M N, JOUBERT J C, et al. Synthèse et caractérisation d'une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12 [J]. Journal of Solid State Chemistry, 1979, 29(2): 291–298. doi: 10.1016/0022-4596(79)90235-4
    [17] MAREZIO M, DERNIER P D, CHENAVAS J, et al. High pressure synthesis and crystal structure of NaMn7O12 [J]. Journal of Solid State Chemistry, 1973, 6(1): 16–20. doi: 10.1016/0022-4596(73)90200-4
    [18] BOCHU B, CHENAVAS J, JOUBERT J C, et al. High pressure synthesis and crystal structure of a new series of perovskite-like compounds CM7O12 (C=Na, Ca, Cd, Sr, La, Nd) [J]. Journal of Solid State Chemistry, 1974, 11(2): 88–93. doi: 10.1016/0022-4596(74)90102-9
    [19] CHENAVAS J, JOUBERT J C, MAREZIO M, et al. The synthesis and crystal structure of CaCu3Mn4O12: a new ferromagnetic-perovskite-like compound [J]. Journal of Solid State Chemistry, 1975, 14(1): 25–32. doi: 10.1016/0022-4596(75)90358-8
    [20] OZAKI Y, GHEDIRA M, CHENAVAS J, et al. High-pressure synthesis and bond lengths of calcium copper germanium oxide [CaCu3](Ge4)O12 [J]. Acta Crystallographica, 1977, B33: 3615–3617.
    [21] MEYER C, GROS Y, BOCHU B, et al. Synthesis, crystal structure, and Mössbauer study of a series of perovskite-like compounds [ACu3](M, Fe)4O12 [J]. Physica Status Solidi (A), 1978, 48(2): 581–586. doi: 10.1002/pssa.2210480239
    [22] BOCHU B, JOUBERT J C, COLLOMB A, et al. Ferromagnetic oxides [Ln3+/Cu3]Mn4O12 (Ln=La to Lu and Y) [J]. Journal of Magnetism and Magnetic Materials, 1980, 15: 1319–1321.
    [23] BRYNTSE I, WERNER P E. Synthesis and structure of a perovskite related oxide, Bi2/3Cu3Ti4O12 [J]. Materials Research Bulletin, 1990, 25(4): 477–483. doi: 10.1016/0025-5408(90)90183-3
    [24] LEINENWEBER K, LINTON J, NAVROTSKY A, et al. High-pressure perovskites on the joint CaTiO3-FeTiO3 [J]. Physics and Chemistry of Minerals, 1995, 22(4): 251–258.
    [25] TROYANCHUK I O, LOBANOVSKY L S, KASPER N V, et al. Magnetotransport phenomena in A(Mn3− x Cu x )Mn4O12 (A=Ca, Tb, Tm) perovskites [J]. Physical Review B, 1998, 58(22): 14903–14907. doi: 10.1103/PhysRevB.58.14903
    [26] ZENG Z, GREENBLATT M, SUNSTROM J E, et al. Giant magnetoresistance in CaCu3Mn4O12-based oxides with perovskite-type structure [J]. Journal of Solid State Chemistry, 1999, 147(1): 185–198. doi: 10.1006/jssc.1999.8212
    [27] RAMIREZ A P, SUBRAMANIAN M A, GARDEL M, et al. Giant dielectric constant response in a copper-titanate [J]. Solid State Communications, 2000, 115(5): 217–220. doi: 10.1016/S0038-1098(00)00182-4
    [28] CHOUDHARY R N P, BHUNIA U. Structural, dielectric and electrical properties of ACu3Ti4O12 (A=Ca, Sr, and Ba) [J]. Journal of Materials Science, 2002, 37(24): 5177–5182. doi: 10.1023/A:1021019412533
    [29] HOMES C C, VOGT T, SHAPIRO S M, et al. Optical response of high-dielectric-constant perovskite-related oxide [J]. Science, 2000, 293(5530): 673–676.
    [30] HE L X, NEATON J B, COHEN M H, et al. First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12 [J]. Physical Review B, 2002, 65(21): 214112. doi: 10.1103/PhysRevB.65.214112
    [31] COLLOMB A, SAMARAS D, BOCHU B, et al. Propriétés et structure magnétiques de CaCu3Ti4O12 à structure perovskite [J]. Physica Status Solidi A, 1977, 41(2): 459–463. doi: 10.1002/pssa.2210410215
    [32] KOITZSCH A, BLUMBERG G, GOZAR A, et al. Antiferromagnetism in CaCu3Ti4O12 studied by magnetic Raman spectroscopy [J]. Physical Review B, 2002, 65(5): 052406. doi: 10.1103/PhysRevB.65.052406
    [33] LUNKENHEIMER P, BOBNAR V, PRONIN A V, et al. Origin of apparent colossal dielectric constants [J]. Physical Review B, 2002, 66(5): 052105.
    [34] MAXWELL J C. A Treatise on electricity and magnetism [M]. 3rd ed. New York: Dover, 1954.
    [35] WAGNER K W. Zur theorie der unvollkommenen dielektrika [J]. Annalen der Physik, 1913, 345(5): 817–855. doi: 10.1002/andp.19133450502
    [36] LARSEN P K, METSELAAR R. Electric and dielectric properties of polycrystalline yttrium iron garnet: space-charge-limited currents in an inhomogeneous solid [J]. Physical Review B, 1973, 8(5): 2016–2025. doi: 10.1103/PhysRevB.8.2016
    [37] TSELEV A, BROOKS C M, ANLAGE S M et al. Evidence for power-law frequency dependence of intrinsic dielectric response in the CaCu3Ti4O12 [J]. Physical Review B, 2004, 70(14): 144101. doi: 10.1103/PhysRevB.70.144101
    [38] LIU J J, DUAN C G, YIN W G, et al. Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12 [J]. Physical Review B, 2004, 70(14): 144106. doi: 10.1103/PhysRevB.70.144106
    [39] LIU J J, DUAN C G, MEI W N. Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A=Ca, Bi2/3, Y2/3, La2/3) [J]. Journal of Applied Physics, 2005, 98(9): 093703. doi: 10.1063/1.2125117
    [40] SHAO S F, ZHANG J L, ZHENG P, et al. Microstructure and electrical properties of CaCu3Ti4O12 ceramics [J]. Journal of Applied Physics, 2006, 99(8): 084106. doi: 10.1063/1.2191447
    [41] FU D S, TANIGUCHI H, TANIYAMA T, et al. Origin of giant dielectric response in nonferroelectric CaCu3Ti4O12: inhomogeneous conduction nature probed by atomic force microscopy [J]. Chemistry of Materials, 2008, 20(5): 1694–1698. doi: 10.1021/cm0710507
    [42] CHUNG S Y, KIM I D, KANG S J L. Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate [J]. Nature Materials, 2004, 3(11): 774–778. doi: 10.1038/nmat1238
    [43] CLARKE D R. Varistor ceramics [J]. Journal of the American Ceramic Society, 1999, 82(3): 485–502. doi: 10.1111/j.1151-2916.1999.tb01793.x
    [44] FALCÓN H, ALONSO J A, SÁNCHEZ-BENÍTEZ J, et al. Crystal structure, magnetic and electrical properties of CaCu3Mn4− x Ti x O12 (0.3≤ x≤ 3.0) perovskites [J]. Journal of Physics: Condensed Matter, 2006, 18(29): 6841–6852. doi: 10.1088/0953-8984/18/29/021
    [45] DENG G C, XANTHOPOULOS N, MURALT P. Chemical nature of colossal dielectric constant of CaCu3Ti4O12 thin film by pulsed laser deposition [J]. Applied Physics Letters, 2008, 92(17): 172909. doi: 10.1063/1.2919076
    [46] JACOB K T, SHEKHAR C, LI X G, et al. Gibbs energy of formation of CaCu3Ti4O12 and phase relations in the system CaO-CuO/Cu2O-TiO2 [J]. Acta Materialia, 2008, 56(17): 4798–4803. doi: 10.1016/j.actamat.2008.05.038
    [47] AMARAL F, RUBINGER C P L, VALENTE M A, et al. Enhanced dielectric response of GeO2-doped CaCu3Ti4O12 ceramics [J]. Journal of Applied Physics, 2009, 105(3): 034109. doi: 10.1063/1.3075909
    [48] CHOI S Y, CHUNG S Y, YAMAMOTO T, et al. Direct determination of dopant site selectivity in ordered perovskite CaCu3Ti4O12 polycrystals by aberration-corrected STEM [J]. Advanced Materials, 2009, 21(8): 885–889. doi: 10.1002/adma.200802728
    [49] DENG G C, MURALT P. Annealing effects on electrical properties and defects of CaCu3Ti4O12 thin films deposited by pulsed laser deposition [J]. Physical Review B, 2010, 81(22): 224111. doi: 10.1103/PhysRevB.81.224111
    [50] YAMADA I, TAKATA K, HAYASHI N, et al. A perovskite containing quadrivalent iron as a charge-disproportionated ferrimagnet [J]. Angewandte Chemie International Edition, 2008, 47(37): 7032–7035. doi: 10.1002/anie.200801482
    [51] XIANG H P, LIU X J, ZHAO E J, et al. Ferrimagnetic and half-metallic CaCu3Fe4O12: prediction from first principles investigation [J]. Applied Physics Letters, 2007, 91(1): 011903. doi: 10.1063/1.2753734
    [52] MIZUMAKI M, CHEN W T, SAITO T, et al. Direct observation of the ferrimagnetic coupling of A-site Cu and B-site Fe spins in charge-disproportionated CaCu3Fe4O12 [J]. Physical Review B, 2011, 84(9): 094418. doi: 10.1103/PhysRevB.84.094418
    [53] LONG Y W. A-site ordered quadruple perovskite oxides AAʹ3B4O12 [J]. Chinese Physics B, 2016, 25(7): 078108. doi: 10.1088/1674-1056/25/7/078108
    [54] YAMADA I, TSUCHIDA K, OHGUSHI K, et al. Giant negative thermal expansion in the iron perovskite SrCu3Fe4O12 [J]. Angewandte Chemie International Edition, 2011, 50(29): 6579–6582. doi: 10.1002/anie.201102228
    [55] TAKENAKA K, TAKAGI H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides [J]. Applied Physics Letters, 2005, 87(26): 261902. doi: 10.1063/1.2147726
    [56] HAO X F, XU Y H, GAO F M, et al. Charge disproportionation in CaCu3Fe4O12 [J]. Physical Review B, 2009, 79(11): 113101. doi: 10.1103/PhysRevB.79.113101
    [57] LI H P, LV S H, WANG Z C, et al. Mechanism of A-B intersite charge transfer and negative thermal expansion in A-site-ordered perovskite LaCu3Fe4O12 [J]. Journal of Applied Physics, 2012, 111(10): 103718. doi: 10.1063/1.4721408
    [58] CHEN W T, SAITO T, HAYASHI N, et al. Ligand-hole localization in oxides with unusual valence Fe [J]. Scientific Reports, 2012, 2: 449. doi: 10.1038/srep00449
    [59] ALLUB R, ALASCIO B. A thermodynamic model for the simultaneous charge/spin order transition in LaCu3Fe4O12 [J]. Journal of Physics: Condensed Matter, 2012, 24(49): 495601. doi: 10.1088/0953-8984/24/49/495601
    [60] ETANI H, YAMADA I, OHGUSHI K, et al. Suppression of intersite charge transfer in charge-disproportionated perovskite YCu3Fe4O12 [J]. Journal of the American Chemical Society, 2012, 135(16): 6100–6106.
    [61] YAMADA I, ETANI H, TSUCHIDA K, et al. Control of bond-strain-induced electronic phase transitions in iron perovskites [J]. Inorganic Chemistry, 2013, 52(23): 13751–13761. doi: 10.1021/ic402344m
    [62] REZAEI N, HANSMANN P, BAHRAMY M S, et al. Mechanism of charge transfer/disproportionation in LnCu3Fe4O12 (Ln=lanthanides) [J]. Physical Review B, 2014, 89(12): 125125. doi: 10.1103/PhysRevB.89.125125
    [63] MENG J L, ZHANG L F, YAO F, et al. Theoretical study on the negative thermal expansion perovskite LaCu3Fe4O12: pressure-triggered transition of magnetism, charge, and spin state [J]. Inorganic Chemistry, 2017, 56(11): 6371–6379. doi: 10.1021/acs.inorgchem.7b00458
    [64] YAMADA I, MARUKAWA S, MURAKAMI M, et al. “True” negative thermal expansion in Mn-doped LaCu3Fe4O12 perovskite oxides [J]. Applied Physics Letters, 2014, 105(23): 231906. doi: 10.1063/1.4903890
    [65] SAKAI Y, YANG J Y, YU R Z, et al. A-site and B-site charge orderings in an s- d level controlled perovskite oxide PbCoO3 [J]. Journal of the American Chemical Society, 2017, 139(12): 4574–4581. doi: 10.1021/jacs.7b01851
    [66] LIU Z H, SAKAI Y, YANG J Y, et al. Sequential spin state transition and intermetallic charge transfer in PbCoO3 [J]. Journal of the American Chemical Society, 2020, 142(12): 5731–5741. doi: 10.1021/jacs.9b13508
    [67] OVSYANNIKOV S V, ABAKUMOV A M, TSIRLIN A A, et al. Perovskite-like Mn2O3: a path to new manganites [J]. Angewandte Chemie International Edition, 2013, 52(5): 1494–1498. doi: 10.1002/anie.201208553
    [68] BYKOVA E, DUBROVINSKY L, DUBROVINSKAIA N, et al. Structural complexity of simple Fe2O3 at high pressures and temperatures [J]. Nature Communications, 2016, 7: 10661. doi: 10.1038/ncomms10661
    [69] SMOLENSKII G A, BOKOV V A. Coexistence of magnetic and electric ordering in crystals [J]. Journal of Applied Physics, 1964, 35(3): 915–918. doi: 10.1063/1.1713535
    [70] KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization [J]. Nature, 2003, 426(6962): 55–58. doi: 10.1038/nature02018
    [71] WANG J, NEATON J B, ZHENG H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures [J]. Science, 2003, 299(5613): 1719–1722. doi: 10.1126/science.1080615
    [72] KHOMSKII D I. Multiferroics: different ways to combine magnetism and ferroelectricity [J]. Journal of Magnetism and Magnetic Materials, 2006, 306(1): 1–8. doi: 10.1016/j.jmmm.2006.01.238
    [73] DONG S, LIU J M, CHEONG S W, et al. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology [J]. Advances in Physics, 2015, 64(5/6): 519–626.
    [74] POPOV Y F, KADOMTSEVA A M, KROTOV S S, et al. Features of the magnetoelectric properties of BiFeO3 in high magnetic fields [J]. Low Temperature Physics, 2001, 27(6): 478–479. doi: 10.1063/1.1382990
    [75] TOKURA Y, SEKI S, NAGAOSA N. Multiferroics of spin origin [J]. Reports on Progress in Physics, 2014, 77(7): 076501. doi: 10.1088/0034-4885/77/7/076501
    [76] GAJEK M, BIBES M, FUSIL S, et al. Tunnel junctions with multiferroic barriers [J]. Nature Materials, 2007, 6(4): 296–302. doi: 10.1038/nmat1860
    [77] CHU Y H, MARTIN L W, HOLCOMB M B, et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic [J]. Nature Materials, 2008, 7(6): 478–482. doi: 10.1038/nmat2184
    [78] SHEVLIN S. Multiferroics and the path to the market [J]. Nature Materials, 2019, 18(3): 191–192. doi: 10.1038/s41563-019-0295-6
    [79] NAN T X, LIN H, GAO Y, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas [J]. Nature Communications, 2017, 8(1): 296. doi: 10.1038/s41467-017-00343-8
    [80] LONG Y W, SAITO T, MIZUMAKI M, et al. Various valence states of square-coordinated Mn in A-site-ordered perovskites [J]. Journal of the American Chemical Society, 2009, 131(44): 16244–16247. doi: 10.1021/ja906668c
    [81] LV S H, LI H P, LIU X J, et al. Mn-Cr intersite independent magnetic behavior and electronic structures of LaMn3Cr4O12: study from first-principles [J]. Journal of Applied Physics, 2011, 110(2): 023711. doi: 10.1063/1.3610504
    [82] 殷云宇, 王潇, 邓宏芟, 等. 多种有序钙钛矿结构的高压制备与特殊物性 [J]. 物理学报, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201

    YIN Y Y, WANG X, DENG H S, et al. High-pressure synthesis and special physical properties of several ordered perovskite structures [J]. Acta Physica Sinica, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [83] SCHIRBER M. Multiferroic surprise [J]. Physics, 2015, 8: s95. doi: 10.1103/Physics.8.s95
    [84] FENG J S, XIANG H J. Anisotropic symmetric exchange as a new mechanism for multiferroicity [J]. Physical Review B, 2016, 93(17): 174416. doi: 10.1103/PhysRevB.93.174416
    [85] HUR N, PARK S, SHARMA P A, et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields [J]. Nature, 2004, 429(6990): 392–395. doi: 10.1038/nature02572
    [86] ZHOU L, DAI J H, CHAI Y S, et al. Realization of large electric polarization and strong magnetoelectric coupling in BiMn3Cr4O12 [J]. Advanced Materials, 2017, 29(44): 1703435. doi: 10.1002/adma.201703435
    [87] 周龙, 王潇, 张慧敏, 等. 多阶有序钙钛矿多铁性材料的高压制备与物性 [J]. 物理学报, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878

    ZHOU L, WANG X, ZHANG H M, et al. High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure [J]. Acta Physica Sinica, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [88] LIU G X, LIU Z H, CHAI Y S, et al. Magnetic and electric field dependent anisotropic magnetoelectric multiferroicity in SmMn3Cr4O12 [J]. Physical Review B, 2021, 104(5): 054407.
    [89] TANDA S, TSUNETA T, OKAJIMA Y, et al. A Möbius strip of single crystals [J]. Nature, 2002, 417(6887): 397–398. doi: 10.1038/417397a
    [90] HAN D R, PAL S, LIU Y, et al. Folding and cutting DNA into reconfigurable topological nanostructures [J]. Nature Nanotechnology, 2010, 5(10): 712–717. doi: 10.1038/nnano.2010.193
    [91] GRAY A. Modern differential geometry of curves and surfaces with mathematica [M]. 2nd ed. Boca Raton: CRC Press, 1997.
    [92] LIU G X, PI M C, ZHOU L, et al. Physical realization of topological Roman surface by spin-induced ferroelectric polarization in cubic lattice [J]. Nature Communications, 2022, 13(1): 2373. doi: 10.1038/s41467-022-29764-w
    [93] WANG Z W, CHAI Y S, DONG S. First-principles demonstration of Roman-surface topological multiferroicity [J]. Physical Review B, 2023, 108(6): L060407. doi: 10.1103/PhysRevB.108.L060407
    [94] BAIBICH M N, BROTO J M, FERT A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices [J]. Physical Review Letters, 1988, 61(21): 2472–2475. doi: 10.1103/PhysRevLett.61.2472
    [95] MOTT N F. The electrical conductivity of transition metals [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1936, 153(880): 699-717.
    [96] PICKETT W E, MOODERA J S. Half metallic magnets [J]. Physics Today, 2001, 54(5): 39–44. doi: 10.1063/1.1381101
    [97] PARK J H, VESCOVO E, KIM H J, et al. Direct evidence for a half-metallic ferromagnet [J]. Nature, 1998, 392(6678): 794–796. doi: 10.1038/33883
    [98] HWANG H Y, CHEONG S W, ONG N P, et al. Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3 [J]. Physical Review Letters, 1996, 77(10): 2041–2044. doi: 10.1103/PhysRevLett.77.2041
    [99] KOBAYASHI K I, KIMURA T, SAWADA H, et al. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure [J]. Nature, 1998, 395(6703): 677–680. doi: 10.1038/27167
    [100] KOBAYASHI K I, KIMURA T, TOMIOKA Y, et al. Intergrain tunneling magnetoresistance in polycrystals of the ordered double perovskite Sr2FeReO6 [J]. Physical Review B, 1999, 59(17): 11159–11162. doi: 10.1103/PhysRevB.59.11159
    [101] LIU Z H, ZHANG S K, WANG X, et al. Realization of a half metal with a record-high Curie temperature in perovskite oxides [J]. Advanced Materials, 2022, 34(17): 2200626. doi: 10.1002/adma.202200626
    [102] WANG X, LIU Z H, DENG H S, et al. Comparative study on the magnetic and transport properties of B-site ordered and disordered CaCu3Fe2Os2O12 [J]. Inorganic Chemistry, 2022, 61(42): 16929–16935. doi: 10.1021/acs.inorgchem.2c03030
    [103] EL GANICH H, EL RHAZOUANI O, AHMED Y A, et al. Computation of the exchange interactions in CaCu3Fe2Os2O12 quadruple perovskite: Monte Carlo simulation [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 150: 115696. doi: 10.1016/j.physe.2023.115696
    [104] MEHMOOD S, ALI Z, ALHARBI Y T, et al. Structural and magneto-elastic properties of the quadruple perovskites CaCu3B2Os2O12 (B=Mn–Ni): the Heisenberg model and DFT study [J]. Journal of Electronic Materials, 2023, 52(9): 5872–5883. doi: 10.1007/s11664-023-10555-y
    [105] LIU Z H, SUN Q, YE X B, et al. Quadruple perovskite oxide LaCu3Co2Re2O12: a ferrimagnetic half metal with nearly 100% B-site degree of order [J]. Applied Physics Letters, 2020, 117(15): 152402. doi: 10.1063/5.0025704
    [106] WANG X, LIU M, SHEN X D, et al. High-temperature ferrimagnetic half metallicity with wide spin-up energy gap in NaCu3Fe2Os2O12 [J]. Inorganic Chemistry, 2019, 58(1): 320–326. doi: 10.1021/acs.inorgchem.8b02404
    [107] WANG X, LIU Z H, YE X B, et al. Os doping suppressed Cu-Fe charge transfer and induced structural and magnetic phase transitions in LaCu3Fe4− x Os x O12 ( x = 1 and 2) [J]. Inorganic Chemistry, 2021, 60(9): 6298–6305. doi: 10.1021/acs.inorgchem.1c00009
    [108] YE X B, WANG X, LIU Z H, et al. Emergent physical properties of perovskite-type oxides prepared under high pressure [J]. Dalton Transactions, 2022, 51(5): 1745–1753. doi: 10.1039/D1DT03551G
    [109] LI X X, WU X J, LI Z Y, et al. Bipolar magnetic semiconductors: a new class of spintronics materials [J]. Nanoscale, 2012, 4(18): 5680–5685. doi: 10.1039/c2nr31743e
    [110] KATSNELSON M I, IRKHIN V Y, CHIONCEL L, et al. Half-metallic ferromagnets: from band structure to many-body effects [J]. Reviews of Modern Physics, 2008, 80(2): 315–378. doi: 10.1103/RevModPhys.80.315
    [111] YAMADA I, FUJII H, TAKAMATSU A, et al. Bifunctional oxygen reaction catalysis of quadruple manganese perovskites [J]. Advanced Materials, 2017, 29(4): 1603004. doi: 10.1002/adma.201603004
    [112] YE X B, SONG S Z, LI L L, et al. Aʹ-B intersite cooperation-enhanced water splitting in quadruple perovskite oxide CaCu3Ir4O12 [J]. Chemistry of Materials, 2021, 33(23): 9295–9305. doi: 10.1021/acs.chemmater.1c03015
    [113] AKIZUKI Y, YAMADA I, FUJITA K, et al. A-site-ordered perovskite MnCu3V4O12 with a 12-coordinated manganese (Ⅱ) [J]. Inorganic Chemistry, 2013, 52(19): 11538–11543. doi: 10.1021/ic401855j
    [114] AKIZUKI Y, YAMADA I, FUJITA K, et al. Rattling in the quadruple perovskite CuCu3V4O12 [J]. Angewandte Chemie International Edition, 2015, 54(37): 10870–10874. doi: 10.1002/anie.201504784
    [115] CONG J Z, ZHAI K, CHAI Y S, et al. Spin-induced multiferroicity in the binary perovskite manganite Mn2O3 [J]. Nature Communications, 2018, 9(1): 2996. doi: 10.1038/s41467-018-05296-0
    [116] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides [J]. Science Advances, 2019, 5(2): eaav0693. doi: 10.1126/sciadv.aav0693
    [117] ALBRECHT E K, KARTTUNEN A J. Investigation on the predictive power of tolerance factor τ for A-site double perovskite oxides [J]. Dalton Transactions, 2023, 52(35): 12461–12469. doi: 10.1039/D3DT01990J
    [118] STRELTSOV S V, KHOMSKII D I. Jahn-Teller distortion and charge, orbital, and magnetic order in NaMn7O12 [J]. Physical Review B, 2014, 89(20): 201115(R).
    [119] JOHNSON R D, KHALYAVIN D D, MANUEL P, et al. Magneto-orbital ordering in the divalent A-site quadruple perovskite manganites AMn7O12 (A=Sr, Cd, and Pb) [J]. Physical Review B, 2017, 96(5): 054448. doi: 10.1103/PhysRevB.96.054448
    [120] BELIK A A, JOHNSON R D, KHALYAVIN D D. The rich physics of A-site-ordered quadruple perovskite manganites AMn7O12 [J]. Dalton Transactions, 2021, 50(43): 15458–15472. doi: 10.1039/D1DT02992D
  • 加载中
图(21)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  43
  • PDF下载量:  86
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2023-12-15
  • 网络出版日期:  2024-02-04
  • 刊出日期:  2024-02-05

目录

    /

    返回文章
    返回