优先发表

优先发表栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
脉冲应力冲击下30CrMnMo钢的绝热剪切失效行为
程昊, 王猛, 李想, 曲禹同, 吴海龙, 刘子禛, 李博
, doi: 10.11858/gywlxb.20230812
摘要:

为研究30CrMnMo钢在脉冲应力冲击载荷下的绝热剪切失效及演化特性,利用分离式霍普金森压杆对一种轴对称帽型试件进行冲击剪切实验,并运用LS-DYNA动力学有限元软件对不同入射脉冲应力载荷下的剪切失效演化及剪切区温度分布进行数值模拟。结果表明,帽型试件的绝热剪切失效与脉冲应力比冲量相关,对于30CrMnMo钢帽型试件,其绝热剪切失效对应的脉冲应力比冲量近似为常量。数值模拟中,当网格尺寸小于剪切带宽度时,能够有效模拟剪切带内的局部温升热点特性。绝热剪切演化表现为失稳由帽型试件剪切区拐角处启动并同时向中心传播,剪切带内外材料主要经历均匀剪切变形和失稳快速扩展2个阶段。

为研究30CrMnMo钢在脉冲应力冲击载荷下的绝热剪切失效及演化特性,利用分离式霍普金森压杆对一种轴对称帽型试件进行冲击剪切实验,并运用LS-DYNA动力学有限元软件对不同入射脉冲应力载荷下的剪切失效演化及剪切区温度分布进行数值模拟。结果表明,帽型试件的绝热剪切失效与脉冲应力比冲量相关,对于30CrMnMo钢帽型试件,其绝热剪切失效对应的脉冲应力比冲量近似为常量。数值模拟中,当网格尺寸小于剪切带宽度时,能够有效模拟剪切带内的局部温升热点特性。绝热剪切演化表现为失稳由帽型试件剪切区拐角处启动并同时向中心传播,剪切带内外材料主要经历均匀剪切变形和失稳快速扩展2个阶段。

压力环境对纳米晶金刚石石墨化的影响
于少楠, 王文丹, 何强, 杨雨滔, 唐名轩, 马小娟, 李星翰
, doi: 10.11858/gywlxb.20240715
摘要:

高压下纳米金刚石石墨化对多晶金刚石烧结体的性能具有非常重要的影响。为此,在5~9 GPa、600~1500 ℃的压力温度范围,分别对平均晶粒尺寸为50 nm的纯纳米金刚石粉末和NaCl-纳米金刚石混合粉末的石墨化温度进行了研究。结合粉末X射线衍射的物相定量分析方法,分析了非静水压(纯金刚石粉末)和准静水压(NaCl-纳米金刚石混合粉末)下纳米金刚石在不同压力和温度下的石墨化程度。结果表明:5 GPa时,纯纳米金刚石粉末石墨化的起始温度在800 ℃以上,9 GPa时则在1000~1300 ℃之间;在约7 GPa的压力下,较短的保温时间内纳米金刚石的石墨化温度由非静水压环境中的1000 ℃提高到准静水压环境中的1500 ℃以上。

高压下纳米金刚石石墨化对多晶金刚石烧结体的性能具有非常重要的影响。为此,在5~9 GPa、600~1500 ℃的压力温度范围,分别对平均晶粒尺寸为50 nm的纯纳米金刚石粉末和NaCl-纳米金刚石混合粉末的石墨化温度进行了研究。结合粉末X射线衍射的物相定量分析方法,分析了非静水压(纯金刚石粉末)和准静水压(NaCl-纳米金刚石混合粉末)下纳米金刚石在不同压力和温度下的石墨化程度。结果表明:5 GPa时,纯纳米金刚石粉末石墨化的起始温度在800 ℃以上,9 GPa时则在1000~1300 ℃之间;在约7 GPa的压力下,较短的保温时间内纳米金刚石的石墨化温度由非静水压环境中的1000 ℃提高到准静水压环境中的1500 ℃以上。

低温环境对乳化炸药爆炸性能的影响
刘赛, 韩体飞, 王猛, 陈凯强, 刘广鹏, 姜鑫, 孙彦臣
, doi: 10.11858/gywlxb.20240712
摘要:

在低温条件下乳化炸药爆炸性能的下降会严重影响爆破效果,研究药体温度改变后乳化炸药爆炸性能的变化规律具有一定的工程应用价值。为此,设计了一系列乳化炸药药体温度精确控制装置,对药体温度为25、0、−5、−10、−15 ℃的乳化炸药的爆速、猛度、做功能力及空中爆炸冲击波超压进行测量,并观察乳化炸药的微观结构。实验结果表明:当药体温度由25 ℃降至−15℃时,炸药的爆速由4227 m/s降至3291 m/s,猛度由13.0 mm降至5.2 mm,做功能力由323 mL降至208 mL,爆炸冲击波超压由284.9 kPa降至115.8 kPa。随着药体温度的降低,硝酸铵析晶量增加,乳胶粒子的局部结构被破坏,致使乳化炸药的微观结构发生变化,爆炸性能降低。低温环境对乳化炸药猛度的影响最大,对爆速的影响最小;随着温度的降低,爆炸性能的降幅增大。在工程应用中,需综合考虑爆炸性能的降幅进行爆破参数设计。

在低温条件下乳化炸药爆炸性能的下降会严重影响爆破效果,研究药体温度改变后乳化炸药爆炸性能的变化规律具有一定的工程应用价值。为此,设计了一系列乳化炸药药体温度精确控制装置,对药体温度为25、0、−5、−10、−15 ℃的乳化炸药的爆速、猛度、做功能力及空中爆炸冲击波超压进行测量,并观察乳化炸药的微观结构。实验结果表明:当药体温度由25 ℃降至−15℃时,炸药的爆速由4227 m/s降至3291 m/s,猛度由13.0 mm降至5.2 mm,做功能力由323 mL降至208 mL,爆炸冲击波超压由284.9 kPa降至115.8 kPa。随着药体温度的降低,硝酸铵析晶量增加,乳胶粒子的局部结构被破坏,致使乳化炸药的微观结构发生变化,爆炸性能降低。低温环境对乳化炸药猛度的影响最大,对爆速的影响最小;随着温度的降低,爆炸性能的降幅增大。在工程应用中,需综合考虑爆炸性能的降幅进行爆破参数设计。

高能量密度氮的研究进展
袁嘉男, 李建福, 王晓丽
, doi: 10.11858/gywlxb.20230797
摘要:

氮在常压下是非常稳定的元素,以氮气分子形式存在。研究发现,氮在高温高压下能够形成聚合结构,这种结构具有极高的能量密度,而且分解产物为无污染的氮气,从应用角度上看,它能够作为新型环保高能量密度材料。随后,人们对其进行了大量的研究,得到了氮在高压条件下的相图,并且合成出立方偏转氮、层状聚合氮等结构。然而,纯氮聚合结构的合成条件比较严苛,在常压下很难保存。人们又转向分子结构氮和惰性气体氮化物等,希望能够得到常压下稳定的高能量密度氮结构。为此,针对目前高能量密度氮的理论和实验进展进行了简要的介绍,并对未来高能量密度氮的发展方向进行了探讨。

氮在常压下是非常稳定的元素,以氮气分子形式存在。研究发现,氮在高温高压下能够形成聚合结构,这种结构具有极高的能量密度,而且分解产物为无污染的氮气,从应用角度上看,它能够作为新型环保高能量密度材料。随后,人们对其进行了大量的研究,得到了氮在高压条件下的相图,并且合成出立方偏转氮、层状聚合氮等结构。然而,纯氮聚合结构的合成条件比较严苛,在常压下很难保存。人们又转向分子结构氮和惰性气体氮化物等,希望能够得到常压下稳定的高能量密度氮结构。为此,针对目前高能量密度氮的理论和实验进展进行了简要的介绍,并对未来高能量密度氮的发展方向进行了探讨。

高压下主族金属富氮化合物的结构与含能特性
翟航, 杨锦坭, 王建云, 李全
, doi: 10.11858/gywlxb.20230810
摘要:

氮是地球大气的主要成分,体积分数约为78%。在常温常压下,氮以三键的形式(N≡N)结合为稳定的双原子分子。然而,在极端高压的作用下,氮气可以解离成含有双键(N=N)甚至单键(N―N)的固体聚合氮结构。由于N≡N与N=N、N―N之间存在巨大的能量差异,其转变过程中伴随着巨大的能量释放,因此,聚合氮是备受关注的高能量密度物质。然而,单质聚合氮必须在高于百万大气压(100 GPa)的环境下才能实现实验制备,苛刻的合成条件极大地限制了其发展及应用。研究发现,金属元素的引入可降低反应势垒,提供化学压力,有效降低聚合氮的合成压强,并形成丰富多样的聚合氮构型。为此,本文重点介绍了高压下主族金属氮化物的结构和含能特性研究进展,讨论了金属富氮化合物在高压下稳定的物理机制,并对未来新型富氮化合物的设计和制备方向提出展望。

氮是地球大气的主要成分,体积分数约为78%。在常温常压下,氮以三键的形式(N≡N)结合为稳定的双原子分子。然而,在极端高压的作用下,氮气可以解离成含有双键(N=N)甚至单键(N―N)的固体聚合氮结构。由于N≡N与N=N、N―N之间存在巨大的能量差异,其转变过程中伴随着巨大的能量释放,因此,聚合氮是备受关注的高能量密度物质。然而,单质聚合氮必须在高于百万大气压(100 GPa)的环境下才能实现实验制备,苛刻的合成条件极大地限制了其发展及应用。研究发现,金属元素的引入可降低反应势垒,提供化学压力,有效降低聚合氮的合成压强,并形成丰富多样的聚合氮构型。为此,本文重点介绍了高压下主族金属氮化物的结构和含能特性研究进展,讨论了金属富氮化合物在高压下稳定的物理机制,并对未来新型富氮化合物的设计和制备方向提出展望。