优先发表

优先发表栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
不同尺寸HMX基压装装药的烤燃特性
董泽霖, 屈可朋, 胡雪垚, 肖玮, 王奕鑫
, doi: 10.11858/gywlxb.20230757
摘要:

为了研究装药尺寸对压装装药烤燃特性的影响,针对HMX基压装装药,建立了压装装药烤燃过程的计算模型,利用Fluent软件对不同装药尺寸的烤燃样弹进行了数值模拟,计算了不同升温速率下装药尺寸对压装装药点火位置、响应温度和响应时间的影响规律。结果表明:在同一升温速率下,HMX基压装炸药装药长径比为1.0时,装药中心响应温度均为最高;装药长径比大于1.0时,装药中心点火温度均随长径比的增加而降低;当长径比增大到一定程度时,装药中心的响应温度趋于恒值。装药的点火位置由升温速率和装药尺寸共同决定,且装药端面与曲面的传热量之比与长径比的平方成反比。当升温缓慢或长径比较小时,装药的点火位置位于装药中心;当升温速率较高且长径比较大时,装药的点火位置逐渐远离装药中心。

为了研究装药尺寸对压装装药烤燃特性的影响,针对HMX基压装装药,建立了压装装药烤燃过程的计算模型,利用Fluent软件对不同装药尺寸的烤燃样弹进行了数值模拟,计算了不同升温速率下装药尺寸对压装装药点火位置、响应温度和响应时间的影响规律。结果表明:在同一升温速率下,HMX基压装炸药装药长径比为1.0时,装药中心响应温度均为最高;装药长径比大于1.0时,装药中心点火温度均随长径比的增加而降低;当长径比增大到一定程度时,装药中心的响应温度趋于恒值。装药的点火位置由升温速率和装药尺寸共同决定,且装药端面与曲面的传热量之比与长径比的平方成反比。当升温缓慢或长径比较小时,装药的点火位置位于装药中心;当升温速率较高且长径比较大时,装药的点火位置逐渐远离装药中心。

栓钉型弧形双钢板混凝土组合板的抗爆性能试验与数值分析
陈英杰, 罗成, 赵春风, 何凯城
, doi: 10.11858/gywlxb.20230752
摘要:

弧形双钢板混凝土组合结构由钢板、混凝土与连接件协同作用,具有更优异的抗震和抗爆性能,被应用于超高层结构、海洋平台和核电设施中。利用试验和数值分析方法研究了栓钉型弧形双钢板混凝土组合结构的破坏模式和损伤机理,参数化分析了爆炸距离、钢板厚度、拱高和栓钉间距对其抗爆性能的影响。结果表明:在爆炸荷载下,栓钉型弧形双钢板混凝土组合板整体表现良好,仍具有较高的承载能力。增加爆炸距离和钢板厚度能有效减小混凝土的损伤和组合板的跨中挠度;减小拱高,混凝土损伤区域从以压缩破坏为主逐渐转换为以拉伸破坏为主,混凝土损伤更严重,组合板跨中挠度变大;减小栓钉间距会增大混凝土塑性损伤程度,但组合板的跨中挠度减小。研究结果可为弧形双钢板混凝土组合结构的设计提供参考。

弧形双钢板混凝土组合结构由钢板、混凝土与连接件协同作用,具有更优异的抗震和抗爆性能,被应用于超高层结构、海洋平台和核电设施中。利用试验和数值分析方法研究了栓钉型弧形双钢板混凝土组合结构的破坏模式和损伤机理,参数化分析了爆炸距离、钢板厚度、拱高和栓钉间距对其抗爆性能的影响。结果表明:在爆炸荷载下,栓钉型弧形双钢板混凝土组合板整体表现良好,仍具有较高的承载能力。增加爆炸距离和钢板厚度能有效减小混凝土的损伤和组合板的跨中挠度;减小拱高,混凝土损伤区域从以压缩破坏为主逐渐转换为以拉伸破坏为主,混凝土损伤更严重,组合板跨中挠度变大;减小栓钉间距会增大混凝土塑性损伤程度,但组合板的跨中挠度减小。研究结果可为弧形双钢板混凝土组合结构的设计提供参考。

极低温区循环载荷作用下Nb3Sn复合超导体的变形损伤及其应变率效应数值模拟
黄敏, 朱本浩, 肖革胜, 乔力
, doi: 10.11858/gywlxb.20230755
摘要:

Nb3Sn超导体在循环载荷下的变形损伤行为研究对揭示超导体临界性能不可逆退化背后的力学机制具有重要意义。采用分子动力学模拟方法研究了极低温条件下单晶和多晶Nb3Sn/Nb复合材料在循环载荷下的变形损伤行为,同时分析了应变率对Nb3Sn/Nb复合材料变形损伤和断裂行为的影响。结果表明:单晶Nb3Sn/Nb复合材料在循环载荷作用后,Nb3Sn层出现滑移,当滑移带交错处的局部应力大于材料强度时,在滑移带交错处微裂纹萌生,致使复合材料中Nb3Sn层断裂失效;而多晶Nb3Sn/Nb复合材料则由于晶界处应力在循环载荷下得不到松弛,当应力峰值超过晶界强度时,在晶界处萌生微裂纹,导致复合材料中Nb3Sn层发生沿晶断裂。Nb3Sn/Nb复合材料在不同应变率下表现出不同的断裂方式。随着应变率的增加,单晶Nb3Sn层中的滑移带数量增加,导致单晶Nb3Sn/Nb复合材料的韧性增强。而多晶Nb3Sn/Nb复合材料中,晶界对材料强度的影响随着应变率的增加而降低,高应变率下,复合材料在Nb3Sn层局部断裂后具有较大的剩余强度。研究结果将有助于理解Nb3Sn/Nb复合材料在循环载荷下的损伤演化过程,为材料的性能优化设计提供一定的理论指导。

Nb3Sn超导体在循环载荷下的变形损伤行为研究对揭示超导体临界性能不可逆退化背后的力学机制具有重要意义。采用分子动力学模拟方法研究了极低温条件下单晶和多晶Nb3Sn/Nb复合材料在循环载荷下的变形损伤行为,同时分析了应变率对Nb3Sn/Nb复合材料变形损伤和断裂行为的影响。结果表明:单晶Nb3Sn/Nb复合材料在循环载荷作用后,Nb3Sn层出现滑移,当滑移带交错处的局部应力大于材料强度时,在滑移带交错处微裂纹萌生,致使复合材料中Nb3Sn层断裂失效;而多晶Nb3Sn/Nb复合材料则由于晶界处应力在循环载荷下得不到松弛,当应力峰值超过晶界强度时,在晶界处萌生微裂纹,导致复合材料中Nb3Sn层发生沿晶断裂。Nb3Sn/Nb复合材料在不同应变率下表现出不同的断裂方式。随着应变率的增加,单晶Nb3Sn层中的滑移带数量增加,导致单晶Nb3Sn/Nb复合材料的韧性增强。而多晶Nb3Sn/Nb复合材料中,晶界对材料强度的影响随着应变率的增加而降低,高应变率下,复合材料在Nb3Sn层局部断裂后具有较大的剩余强度。研究结果将有助于理解Nb3Sn/Nb复合材料在循环载荷下的损伤演化过程,为材料的性能优化设计提供一定的理论指导。