高压下主族金属富氮化合物的结构与含能特性

翟航 杨锦坭 王建云 李全

翟航, 杨锦坭, 王建云, 李全. 高压下主族金属富氮化合物的结构与含能特性[J]. 高压物理学报. doi: 10.11858/gywlxb.20230810
引用本文: 翟航, 杨锦坭, 王建云, 李全. 高压下主族金属富氮化合物的结构与含能特性[J]. 高压物理学报. doi: 10.11858/gywlxb.20230810
ZHAI Hang, YANG Jinni, WANG Jianyun, LI Quan. Structure and Energy Properties of Nitrogen-Rich Compounds of Main Group Metals under High Pressure[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20230810
Citation: ZHAI Hang, YANG Jinni, WANG Jianyun, LI Quan. Structure and Energy Properties of Nitrogen-Rich Compounds of Main Group Metals under High Pressure[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20230810

高压下主族金属富氮化合物的结构与含能特性

doi: 10.11858/gywlxb.20230810
基金项目: 国家自然科学基金(T2325013,52288102,52090024);国家重点研发计划(2021YFA1400503,2018YFA0703404)
详细信息
    作者简介:

    翟 航(1994-),女,博士,主要从事极端高压下计算凝聚态物理研究. E-mail:zhaihang@calypso.org.cn

    通讯作者:

    王建云(1992-),女,硕士,工程师,主要从事极端高压下计算凝聚态物理研究. E-mail:wangjianyun@jlu.edu.cn

    李 全(1980-),男,博士,教授,主要从事极端高压下计算凝聚态物理研究. E-mail:liquan777@jlu.edu.cn

  • 中图分类号: O521.2

Structure and Energy Properties of Nitrogen-Rich Compounds of Main Group Metals under High Pressure

  • 摘要: 氮是地球大气的主要成分,体积分数约为78%。在常温常压下,氮以三键的形式(N≡N)结合为稳定的双原子分子。然而,在极端高压的作用下,氮气可以解离成含有双键(N=N)甚至单键(N―N)的固体聚合氮结构。由于N≡N与N=N、N―N之间存在巨大的能量差异,其转变过程中伴随着巨大的能量释放,因此,聚合氮是备受关注的高能量密度物质。然而,单质聚合氮必须在高于百万大气压(100 GPa)的环境下才能实现实验制备,苛刻的合成条件极大地限制了其发展及应用。研究发现,金属元素的引入可降低反应势垒,提供化学压力,有效降低聚合氮的合成压强,并形成丰富多样的聚合氮构型。为此,本文重点介绍了高压下主族金属氮化物的结构和含能特性研究进展,讨论了金属富氮化合物在高压下稳定的物理机制,并对未来新型富氮化合物的设计和制备方向提出展望。

     

  • 图  理论预测的高压下聚合氮的晶体结构和能量密度

    Figure  1.  Crystal structure and energy density of polymeric nitrogen under high pressure predicted by theory

    图  N2的电子轨道示意图

    Figure  2.  Electron orbital distribution of N2 molecule

    图  LiN3、NaN3、KN3、RbN3和CsN3的理论高压相变序列

    Figure  3.  Evolution of theoretical phases of LiN3, NaN3, KN3, RbN3 and CsN3

    图  高压下AN5(A=Li, Na, K, Cs)的晶体结构和能量密度

    Figure  4.  Crystal structure and energy density of AN5 (A=Li, Na, K, Cs) under high pressure

    图  高压下K2N16的晶体结构(P6/mmc-K2N16,5.06 kJ/g)

    Figure  5.  Crystal structure of K2N16 under high pressure (P6/mmc-K2N16, 5.06 kJ/g)

    图  BeN4的ΔH(高压相与P$ \overline{1} $相的焓差)与压力p的关系(a)、高压结构及能量密度(b)

    Figure  6.  Pressure dependent enthalpy differences between the phases and P$ \overline{1} $ phase (ΔH-p) (a) and the structure and energy density of BeN4 (b)

    图  高压下AN4(A=Mg, Ca, Sr, Ba)的晶体结构和能量密度

    Figure  7.  Crystal structure and energy density of AN4 (A=Mg, Ca, Sr, Ba) under high pressure

    图  高压下AN10(A=Mg, Ba)的晶体结构和能量密度

    Figure  8.  Crystal structure and energy density of AN10 (A=Mg, Ba) under high pressure

    图  高压下GaN15、GaN10和GaN5的晶体结构和能量密度

    Figure  9.  Crystal structure and energy density of GaN15, GaN10 and GaN5 under high pressure

    表  1  聚合氮的合成条件、结构特征和能量密度[2125]

    Table  1.   Synthesis conditions, structural characteristics and energy density of polymeric nitrogen[2125]

    MaterialsSynthesis conditionsSpace groupEnergy density/(kJ·g−1)Ref.
    cg-N110 GPa, 2000 KI21310.29[21]
    LP-N150 GPa, 3000 KPba211.81[22]
    HLP-N244 GPa, 3300 KP42bc16.70[25]
    BP-N140 GPa, 2000 KCmca9.09[2324]
    下载: 导出CSV

    表  2  富氮化合物的合成条件和结构特征[2638]

    Table  2.   Synthesis conditions and structural characteristics of nitrogen-rich compounds[2638]

    Category Materials Synthesis conditions Space group Electron configurations Ref.
    Transition metal nitrides TaN5 100 GPa, 2200 K Fdd2 Ta5+(4f145d0) [30]
    WN6 126 GPa, 3500 K R3m W4+(4f145d2) [31]
    TaN4 100 GPa, 2200 K P21/m Ta4+(4f145d1) [30]
    ReN10 123 GPa, 2700 K Immm Re4+(4f145d3) [32]
    WN10 105 GPa, 2700 K Immm W4+(4f145d2) [33]
    Hf4N20·N2 105 GPa, 1900 K Cmmm Hf4+(4f14) [33]
    Os5N28·3N2 105 GPa, 2800 K Pnnm Os4+(4f145d4) [33]
    FeN4 104 GPa, 2000 K $ {P\overline{1}} $ Fe2+(3d6) [34]
    YN6 100 GPa, 3000 K C2/m Y3+(4d0) [35]
    Y2N11 100 GPa, 3000 K P6222 Y3+(4d0) [35]
    Alkali and alkaline
    earth metal nitrides
    LiN5 45 GPa P2 Li+(1s2) [26]
    CsN5 60 GPa $ {P\overline{1}} $ Cs+(5s25p6) [27]
    MgN4 58.5 GPa, 1850 K Ibam Mg2+(2s22p6) [28]
    Mg2N4 58.5 GPa, 1850 K P21/m Mg2+(2s22p6) [28]
    BeN4 85 GPa, 2000 K $ {P\overline{1}} $ Be2+(1s2) [36]
    K3N8 30 GPa, 2000 K I41/amd K+(3s23p6) [29]
    K2N6 45 GPa, 2000 K P6/mmm K+(3s23p6) [29]
    K2N16 80 GPa, 2000 K P6/mcc K+(3s23p6) [37]
    Group Ⅲ metal nitrides GaN10 85 GPa, 2000 K I222 Ga3+(4s24p1) [38]
    GaN5 85 GPa, 2000 K P21/m Ga3+(4s24p1) [38]
    下载: 导出CSV
  • [1] UDDIN J, BARONE V, SCUSERIA G E. Energy storage capacity of polymeric nitrogen [J]. Molecular Physics, 2006, 104(5/6/7): 745–749. doi: 10.1080/00268970500417325
    [2] EREMETS M I, GAVRILIUK A G, SEREBRYANAYA N R, et al. Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures [J]. The Journal of Chemical Physics, 2004, 121(22): 11296–11300. doi: 10.1063/1.1814074
    [3] SUN J, MARTINEZ-CANALES M, KLUG D D, et al. Stable all-nitrogen metallic salt at terapascal pressures [J]. Physical Review Letters, 2013, 111(17): 175502. doi: 10.1103/PhysRevLett.111.175502
    [4] ADELEKE A A, GRESCHNER M J, MAJUMDAR A, et al. Single-bonded allotrope of nitrogen predicted at high pressure [J]. Physical Review B, 2017, 96(22): 224104. doi: 10.1103/PhysRevB.96.224104
    [5] LIU S J, ZHAO L, YAO M G, et al. Novel all-nitrogen molecular crystals of aromatic N10 [J]. Advanced Science, 2020, 7(10): 1902320. doi: 10.1002/advs.201902320
    [6] LI Y W, FENG X L, LIU H Y, et al. Route to high-energy density polymeric nitrogen t-N via He-N compounds [J]. Nature Communications, 2018, 9(1): 722. doi: 10.1038/s41467-018-03200-4
    [7] PICKARD C J, NEEDS R J. High-pressure phases of nitrogen [J]. Physical Review Letters, 2009, 102(12): 125702. doi: 10.1103/PhysRevLett.102.125702
    [8] LI Q S, ZHAO J F. Theoretical study of potential energy surfaces for N12 clusters [J]. The Journal of Physical Chemistry A, 2002, 106(21): 5367–5372. doi: 10.1021/jp020110n
    [9] HIRSHBERG B, GERBER R B, KRYLOV A I. Calculations predict a stable molecular crystal of N8 [J]. Nature Chemistry, 2014, 6(1): 52–56. doi: 10.1038/nchem.1818
    [10] GRESCHNER M J, ZHANG M, MAJUMDAR A, et al. A new allotrope of nitrogen as high-energy density material [J]. The Journal of Physical Chemistry A, 2016, 120(18): 2920–2925. doi: 10.1021/acs.jpca.6b01655
    [11] XU Y G, WANG Q, SHEN C, et al. A series of energetic metal pentazolate hydrates [J]. Nature, 2017, 549(7670): 78–81. doi: 10.1038/nature23662
    [12] ZHAO L, LIU S J, CHEN Y Z, et al. A novel all-nitrogen molecular crystal N16 as a promising high-energy-density material [J]. Dalton Transactions, 2022, 51(24): 9369–9376. doi: 10.1039/D2DT00820C
    [13] BONDARCHUK S V. Bipentazole (N10): a low-energy molecular nitrogen allotrope with high intrinsic stability [J]. The Journal of Physical Chemistry Letters, 2020, 11(14): 5544–5548. doi: 10.1021/acs.jpclett.0c01542
    [14] GONCHAROV A F, GREGORYANZ E, MAO H K, et al. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa [J]. Physical Review Letters, 2000, 85(6): 1262–1265. doi: 10.1103/PhysRevLett.85.1262
    [15] ZENG G Y, QI X F, LIU X B, et al. Advances in disruptive technologies of ultrahigh-energetic materials [J]. Journal of Physics: Conference Series, 2021, 1721: 012009. doi: 10.1088/1742-6596/1721/1/012009
    [16] MAILHIOT C, YANG L H, MCMAHAN A K. Polymeric nitrogen [J]. Physical Review B, 1992, 46(22): 14419–14435. doi: 10.1103/PhysRevB.46.14419
    [17] MARTIN R M, NEEDS R J. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures [J]. Physical Review B, 1986, 34(8): 5082–5092. doi: 10.1103/PhysRevB.34.5082
    [18] LEWIS S P, COHEN M L. High-pressure atomic phases of solid nitrogen [J]. Physical Review B, 1992, 46(17): 11117–11120. doi: 10.1103/PhysRevB.46.11117
    [19] MA Y M, OGANOV A R, LI Z W, et al. Novel high pressure structures of polymeric nitrogen [J]. Physical Review Letters, 2009, 102(6): 065501. doi: 10.1103/PhysRevLett.102.065501
    [20] WANG X L, WANG Y C, MIAO M S, et al. Cagelike diamondoid nitrogen at high pressures [J]. Physical Review Letters, 2012, 109(17): 175502. doi: 10.1103/PhysRevLett.109.175502
    [21] EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [22] TOMASINO D, KIM M, SMITH J, et al. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity [J]. Physical Review Letters, 2014, 113(20): 205502. doi: 10.1103/PhysRevLett.113.205502
    [23] LANIEL D, WINKLER B, FEDOTENKO T, et al. High-pressure polymeric nitrogen allotrope with the black phosphorus structure [J]. Physical Review Letters, 2020, 124(21): 216001. doi: 10.1103/PhysRevLett.124.216001
    [24] JI C, ADELEKE A A, YANG L X, et al. Nitrogen in black phosphorus structure [J]. Science Advances, 2020, 6(23): eaba9206. doi: 10.1126/sciadv.aba9206
    [25] LANIEL D, GENESTE G, WECK G, et al. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa [J]. Physical Review Letters, 2019, 122(6): 066001. doi: 10.1103/PhysRevLett.122.066001
    [26] LANIEL D, WECK G, GAIFFE G, et al. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions [J]. The Journal of Physical Chemistry Letters, 2018, 9(7): 1600–1604. doi: 10.1021/acs.jpclett.8b00540
    [27] STEELE B A, STAVROU E, CROWHURST J C, et al. High-pressure synthesis of a pentazolate salt [J]. Chemistry of Materials, 2017, 29(2): 735–741. doi: 10.1021/acs.chemmater.6b04538
    [28] LANIEL D, WINKLER B, KOEMETS E, et al. Synthesis of magnesium-nitrogen salts of polynitrogen anions [J]. Nature Communications, 2019, 10(1): 4515. doi: 10.1038/s41467-019-12530-w
    [29] WANG Y, BYKOV M, CHEPKASOV I, et al. Stabilization of hexazine rings in potassium polynitride at high pressure [J]. Nature Chemistry, 2022, 14(7): 794–800. doi: 10.1038/s41557-022-00925-0
    [30] BYKOV M, BYKOVA E, PONOMAREVA A V, et al. Stabilization of polynitrogen anions in tantalum-nitrogen compounds at high pressure [J]. Angewandte Chemie International Edition, 2021, 60(16): 9003–9008. doi: 10.1002/anie.202100283
    [31] SALKE N P, XIA K, FU S Y, et al. Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure [J]. Physical Review Letters, 2021, 126(6): 065702. doi: 10.1103/PhysRevLett.126.065702
    [32] BYKOV M, BYKOVA E, KOEMETS E, et al. High-pressure synthesis of a nitrogen-rich inclusion compound ReN8· xN2 with conjugated polymeric nitrogen chains [J]. Angewandte Chemie International Edition, 2018, 57(29): 9048–9053. doi: 10.1002/anie.201805152
    [33] BYKOV M, CHARITON S, BYKOVA E, et al. High-pressure synthesis of metal-inorganic frameworks Hf4N20·N2, WN8·N2, and Os5N28·3N2 with polymeric nitrogen linkers [J]. Angewandte Chemie International Edition, 2020, 59(26): 10321–10326. doi: 10.1002/anie.202002487
    [34] BYKOV M, BYKOVA E, APRILIS G, et al. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains [J]. Nature Communications, 2018, 9(1): 2756. doi: 10.1038/s41467-018-05143-2
    [35] ASLANDUKOV A, TRYBEL F, ASLANDUKOVA A, et al. Anionic N18 macrocycles and a polynitrogen double helix in novel yttrium polynitrides YN6 and Y2N11 at 100 GPa [J]. Angewandte Chemie International Edition, 2022, 61(34): e202207469. doi: 10.1002/anie.202207469
    [36] BYKOV M, FEDOTENKO T, CHARITON S, et al. High-pressure synthesis of Dirac materials: layered van der Waals bonded BeN4 polymorph [J]. Physical Review Letters, 2021, 126(17): 175501. doi: 10.1103/PhysRevLett.126.175501
    [37] SUI M H, LIU S, WANG P, et al. High-pressure synthesis of fully sp2-hybridized polymeric nitrogen layer in potassium supernitride [J]. Science Bulletin, 2023, 68(14): 1505–1513. doi: 10.1016/j.scib.2023.06.029
    [38] ZHAI H, XU R, DAI J H, et al. Stabilized nitrogen framework anions in the Ga-N system [J]. Journal of the American Chemical Society, 2022, 144(47): 21640–21647. doi: 10.1021/jacs.2c09056
    [39] PRINGLE G E, NOAKES D E. The crystal structures of lithium, sodium and strontium azides [J]. Acta Crystallographica Section B, 1968, 24(2): 262–269. doi: 10.1107/S0567740868002062
    [40] MEDVEDEV S A, TROJAN I A, EREMETS M I, et al. Phase stability of lithium azide at pressures up to 60 GPa [J]. Journal of Physics: Condensed Matter, 2009, 21(19): 195404. doi: 10.1088/0953-8984/21/19/195404
    [41] ZHANG M G, YAN H Y, WEI Q, et al. Novel high-pressure phase with pseudo-benzene "N6" molecule of LiN3 [J]. Europhysics Letters, 2013, 101(2): 26004. doi: 10.1209/0295-5075/101/26004
    [42] WANG X L, LI J F, BOTANA J, et al. Polymerization of nitrogen in lithium azide [J]. The Journal of Chemical Physics, 2013, 139(16): 164710. doi: 10.1063/1.4826636
    [43] EREMETS M I, POPOV M Y, TROJAN I A, et al. Polymerization of nitrogen in sodium azide [J]. The Journal of Chemical Physics, 2004, 120(22): 10618–10623. doi: 10.1063/1.1718250
    [44] ZHU H Y, ZHANG F X, JI C, et al. Pressure-induced series of phase transitions in sodium azide [J]. Journal of Applied Physics, 2013, 113(3): 033511. doi: 10.1063/1.4776235
    [45] ZHANG M G, YIN K T, ZHANG X X, et al. Structural and electronic properties of sodium azide at high pressure: a first principles study [J]. Solid State Communications, 2013, 161: 13–18. doi: 10.1016/j.ssc.2013.01.032
    [46] ZHANG J, ZENG Z, LIN H Q, et al. Pressure-induced planar N6 rings in potassium azide [J]. Scientific Reports, 2014, 4(1): 4358. doi: 10.1038/srep04358
    [47] WANG X L, LI J F, XU N, et al. Layered polymeric nitrogen in RbN3 at high pressures [J]. Scientific Reports, 2015, 5(1): 16677. doi: 10.1038/srep16677
    [48] ZHANG M G, YAN H Y, WEI Q, et al. A new high-pressure polymeric nitrogen phase in potassium azide [J]. RSC Advances, 2015, 5(16): 11825–11830. doi: 10.1039/C4RA15699D
    [49] WANG X L, LI J F, ZHU H Y, et al. Polymerization of nitrogen in cesium azide under modest pressure [J]. The Journal of Chemical Physics, 2014, 141(4): 044717. doi: 10.1063/1.4891367
    [50] Peng F, Yao Y S, Liu H Y, et al. Crystalline LiN5 predicted from first-principles as a possible high-energy material [J]. The Journal of Physical Chemistry Letters, 2015, 6(12): 2363–2366. doi: 10.1021/acs.jpclett.5b00995
    [51] STEELE B A, OLEYNIK I I. Sodium pentazolate: a nitrogen rich high energy density material [J]. Chemical Physics Letters, 2016, 643: 21–26. doi: 10.1016/j.cplett.2015.11.008
    [52] STEELE B A, OLEYNIK I I. Novel potassium polynitrides at high pressures [J]. The Journal of Physical Chemistry A, 2017, 121(46): 8955–8961. doi: 10.1021/acs.jpca.7b08974
    [53] WILLIAMS A S, STEELE B A, OLEYNIK I I. Novel rubidium poly-nitrogen materials at high pressure [J]. The Journal of Chemical Physics, 2017, 147(23): 234701. doi: 10.1063/1.5004416
    [54] ZHANG S T, ZHAO Z Y, LIU L L, et al. Pressure-induced stable BeN4 as a high-energy density material [J]. Journal of Power Sources, 2017, 365: 155–161. doi: 10.1016/j.jpowsour.2017.08.086
    [55] ZHANG X J, XIE X, DONG H F, et al. Pressure-induced high-energy-density BeN4 materials with nitrogen chains: first-principles study [J]. The Journal of Physical Chemistry C, 2021, 125(46): 25376–25382. doi: 10.1021/acs.jpcc.1c07500
    [56] YU S Y, HUANG B W, ZENG Q F, et al. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium-nitrogen Mg x N y phases under high pressure [J]. The Journal of Physical Chemistry C, 2017, 121(21): 11037–11046. doi: 10.1021/acs.jpcc.7b00474
    [57] BRAUN C, BÖRGER S L, BOYKO T D, et al. Ca3N2 and Mg3N2: unpredicted high-pressure behavior of binary nitrides [J]. Journal of the American Chemical Society, 2011, 133(12): 4307–4315. doi: 10.1021/ja106459e
    [58] KEVE E T, SKAPSKI A C. Crystal structure of dicalcium nitride [J]. Inorganic Chemistry, 1968, 7(9): 1757–1761. doi: 10.1021/ic50067a014
    [59] SCHNEIDER S B, FRANKOVSKY R, SCHNICK W. Synthesis of alkaline earth diazenides MAEN2 (MAE = Ca, Sr, Ba) by controlled thermal decomposition of azides under high pressure [J]. Inorganic Chemistry, 2012, 51(4): 2366–2373. doi: 10.1021/ic2023677
    [60] ZHU S S, PENG F, LIU H Y, et al. Stable calcium nitrides at ambient and high pressures [J]. Inorganic Chemistry, 2016, 55(15): 7550–7555. doi: 10.1021/acs.inorgchem.6b00948
    [61] XIA K, ZHENG X X, YUAN J A, et al. Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts [J]. The Journal of Physical Chemistry C, 2019, 123(16): 10205–10211. doi: 10.1021/acs.jpcc.8b12527
    [62] YUAN J N, XIA K, WU J F, et al. High-energy-density pentazolate salts: CaN10 and BaN10 [J]. Science China Physics, Mechanics & Astronomy, 2021, 64(1): 218211.
    [63] LIU Z, LIU Y, LI D, et al. Insights into antibonding induced energy density enhancement and exotic electronic properties for germanium nitrides at modest pressures [J]. Inorganic Chemistry, 2018, 57(16): 10416–10423. doi: 10.1021/acs.inorgchem.8b01669
    [64] LIU Z, LI D, WEI S L, et al. Bonding properties of aluminum nitride at high pressure [J]. Inorganic Chemistry, 2017, 56(13): 7494–7500. doi: 10.1021/acs.inorgchem.7b00980
    [65] WANG B S, LARHLIMI R, VALENCIA H, et al. Prediction of novel tin nitride Sn x N y phases under pressure [J]. The Journal of Physical Chemistry C, 2020, 124(15): 8080–8093. doi: 10.1021/acs.jpcc.9b11404
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  8
  • PDF下载量:  23
出版历程
  • 收稿日期:  2023-12-11
  • 修回日期:  2024-01-15
  • 网络出版日期:  2024-03-29

目录

    /

    返回文章
    返回