Volume 37 Issue 4
Sep 2023
Turn off MathJax
Article Contents
CHEN Guwen, XU Liang, ZHU Shengcai. Phase Transition Mechanism of Graphite to Nano-Polycrystalline Diamond Resolved by Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 041101. doi: 10.11858/gywlxb.20230663
Citation: CHEN Guwen, XU Liang, ZHU Shengcai. Phase Transition Mechanism of Graphite to Nano-Polycrystalline Diamond Resolved by Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 041101. doi: 10.11858/gywlxb.20230663

Phase Transition Mechanism of Graphite to Nano-Polycrystalline Diamond Resolved by Molecular Dynamics Simulation

doi: 10.11858/gywlxb.20230663
  • Received Date: 16 May 2023
  • Rev Recd Date: 11 Jun 2023
  • Available Online: 05 Aug 2023
  • Issue Publish Date: 01 Sep 2023
  • Previous studies have found that the nano-polycrystalline diamond (NPD) is harder than single crystal diamond, consequently NPD prepared from graphite has been widely studied. Previous experiments revealed that the NPD originated from graphite contains both homogeneous fine structure and lamellar structure, while the mechanism has not been fully understood. In this work, molecular dynamics simulation was carried out, in which graphite models with different interlayer spacings were built up and compressed. The results showed that the graphite under different compression conditions exhibit different phase transition behaviors, namely, lamellar diamond is obtained under martensite transformation, and fine nanodiamonds without a specific orientation are obtained under diffusive transformation. Under hydrostatic pressure, or, if the slip of the graphite layer is not limited and [002] is the maximum pressure direction, the graphite converts into lamellar cubic diamond; if the maximum pressure is in [210] or [010] direction, the phase transition product is the polycrystalline diamond; if the maximum pressure is in [002] direction, the slip of graphite layers is hindered, the product is a mixture of polycrystalline hexagonal and cubic diamond. The microscopic analysis of atomic motion reveals the formation mechanism of NPD transformed from graphite with homogeneous fine structure and lamellar structure, which is expected to provide insights for large-scale synthesis of superhard NPD.

     

  • loading
  • [1]
    BROOKES C A, BROOKES E J. Diamond in perspective: a review of mechanical properties of natural diamond [J]. Diamond and Related Materials, 1991, 1(1): 13–17. doi: 10.1016/0925-9635(91)90006-V
    [2]
    徐波, 田永君. 纳米孪晶超硬材料的高压合成 [J]. 物理学报, 2017, 66(3): 036201. doi: 10.7498/aps.66.036201

    XU B, TIAN Y J. High pressure synthesis of nanotwinned ultrahard materials [J]. Acta Physica Sinica, 2017, 66(3): 036201. doi: 10.7498/aps.66.036201
    [3]
    ZHANG X X, WANG Y C, LV J, et al. First-principles structural design of superhard materials [J]. The Journal of Chemical Physics, 2013, 138(11): 114101. doi: 10.1063/1.4794424
    [4]
    ŠIMŮNEK A, VACKÁŘ J. Hardness of covalent and ionic crystals: first-principle calculations [J]. Physical Review Letters, 2006, 96(8): 085501. doi: 10.1103/PhysRevLett.96.085501
    [5]
    IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6923): 599–600. doi: 10.1038/421599b
    [6]
    HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381
    [7]
    HALL E O. The deformation and ageing of mild steel: Ⅲ discussion of results [J]. Proceedings of the Physical Society: Section B, 1951, 64(9): 747–753. doi: 10.1088/0370-1301/64/9/303
    [8]
    PETCH N J. The orientation relationships between cementite and α-iron [J]. Acta Crystallographica, 1953, 6(1): 96. doi: 10.1107/S0365110X53000260
    [9]
    TSE J S, KLUG D D, GAO F M. Hardness of nanocrystalline diamonds [J]. Physical Review B, 2006, 73(14): 140102. doi: 10.1103/PhysRevB.73.140102
    [10]
    YIP S. Mapping plasticity [J]. Nature Materials, 2004, 3(1): 11–12. doi: 10.1038/nmat105
    [11]
    SUMIYA H, YUSA H, INOUE T, et al. Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature [J]. High Pressure Research, 2006, 26(2): 63–69. doi: 10.1080/08957950600765863
    [12]
    SOLOPOVA N A, DUBROVINSKAIA N, DUBROVINSKY L. Synthesis of nanocrystalline diamond from glassy carbon balls [J]. Journal of Crystal Growth, 2015, 412: 54–59. doi: 10.1016/j.jcrysgro.2014.11.041
    [13]
    JAWORSKA L, SZUTKOWSKA M, MORGIEL J, et al. Ti3SiC2 as a bonding phase in diamond composites [J]. Journal of Materials Science Letters, 2001, 20(19): 1783–1786. doi: 10.1023/A:1012535100330
    [14]
    YUSA H. Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure [J]. Diamond and Related Materials, 2002, 11(1): 87–91. doi: 10.1016/S0925-9635(01)00532-5
    [15]
    SUMIYA H, IRIFUNE T. Microstructure and mechanical properties of high-hardness nano-polycrystalline diamonds [J]. SEI Technical Review, 2008, 66: 85–91.
    [16]
    LU L, SHEN Y F, CHEN X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304(5669): 422–426. doi: 10.1126/science.109290
    [17]
    LU L, CHEN X H, HUANG X X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323(5914): 607–610. doi: 10.1126/science.1167641
    [18]
    SUMIYA H, IRIFUNE T, KURIO A, et al. Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure [J]. Journal of Materials Science, 2004, 39(2): 445–450. doi: 10.1023/B:JMSC.0000011496.15996.44
    [19]
    SCANDOLO S, BERNASCONI M, CHIAROTTI G L, et al. Pressure-induced transformation path of graphite to diamond [J]. Physical Review Letters, 1995, 74(20): 4015–4018. doi: 10.1103/PhysRevLett.74.4015
    [20]
    ZHU S C, YAN X Z, LIU J, et al. A revisited mechanism of the graphite-to-diamond transition at high temperature [J]. Matter, 2020, 3(3): 864–878. doi: 10.1016/j.matt.2020.05.013
    [21]
    MUNDY C J, CURIONI A, GOLDMAN N, et al. Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression [J]. Journal of Chemical Physics, 2008, 128(18): 184701. doi: 10.1063/1.2913201
    [22]
    PINEAU N. Molecular dynamics simulations of shock compressed graphite [J]. The Journal of Physical Chemistry C, 2013, 117(24): 12778–12786. doi: 10.1021/jp403568m
    [23]
    SUN H F, JIANG X Y, DAI R, et al. Understanding the mechanism of shock wave induced graphite-to-diamond phase transition [J]. Materialia, 2022, 24: 101487. doi: 10.1016/j.mtla.2022.101487
    [24]
    PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
    [25]
    STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [26]
    XIE H X, YIN F X, YU T, et al. Mechanism for direct graphite-to-diamond phase transition [J]. Scientific Reports, 2014, 4(1): 5930. doi: 10.1038/srep05930
    [27]
    YUE Y H, GAO Y F, HU W T, et al. Hierarchically structured diamond composite with exceptional toughness [J]. Nature, 2020, 582(7812): 370–374. doi: 10.1038/s41586-020-2361-2
    [28]
    ERSKINE D J, NELLIS W J. Shock-induced martensitic transformation of highly oriented graphite to diamond [J]. Journal of Applied Physics, 1992, 71(10): 4882–4886. doi: 10.1063/1.350633
    [29]
    KRAUS D, RAVASIO A, GAUTHIER M, et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite [J]. Nature Communications, 2016, 7(1): 10970. doi: 10.1038/ncomms10970
    [30]
    TURNEAURE S J, SHARMA S M, VOLZ T J, et al. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds [J]. Science Advances, 2017, 3(10): eaao3561. doi: 10.1126/sciadv.aao3561
    [31]
    SUNG J. Graphite→diamond transition under high pressure: a kinetics approach [J]. Journal of Materials Science, 2000, 35(23): 6041–6054. doi: 10.1023/A:1026779802263
    [32]
    IRIFUNE T, KURIO A, SAKAMOTO S, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature [J]. Physics of the Earth and Planetary Interiors, 2004, 143/144: 593–600. doi: 10.1016/j.pepi.2003.06.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(282) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return