Volume 27 Issue 5
Mar 2015
Turn off MathJax
Article Contents
WANG Hai-Kuo, HE Duan-Wei, XU Chao, GUAN Jun-Wei, WANG Wen-Dan, KOU Zi-Li, PENG Fang. Development of Large Volume-High Static Pressure Techniques Based on the Hinge-Type Cubic Presses[J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 633-661. doi: 10.11858/gywlxb.2013.05.001
Citation: WANG Hai-Kuo, HE Duan-Wei, XU Chao, GUAN Jun-Wei, WANG Wen-Dan, KOU Zi-Li, PENG Fang. Development of Large Volume-High Static Pressure Techniques Based on the Hinge-Type Cubic Presses[J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 633-661. doi: 10.11858/gywlxb.2013.05.001

Development of Large Volume-High Static Pressure Techniques Based on the Hinge-Type Cubic Presses

doi: 10.11858/gywlxb.2013.05.001
  • Received Date: 27 Aug 2013
  • Rev Recd Date: 24 Sep 2013
  • Publish Date: 15 Oct 2013
  • The large volume press (LVP) becomes more and more popular with the scientific and technological workers in the high pressure area, because it could generate relatively higher pressure, provide better hydrostatic pressure and could be utilized in conjunction with in situ X-ray diffraction, neutron diffraction and ultrasonic measurement. There have been generally two LVP techniques to generate high-pressure: the double-anvil apparatus and the multi-anvil apparatus (MAA). Hinge-type cubic presses, as the main apparatus in china, have been widely used in the fields of both scientific research and diamond industry. However, for a long time past, the maximum pressure using the conventional one-stage anvil system for hinge-type cubic press is about 6 GPa, and the techniques about two-stage apparatus (octahedral press) that could generate pressure exceed 20 GPa is blank in our country. To a certain extent, the backwardness of the LVP technology in china restricts the development of high pressure science and related subjects. In recent years, we designed two kinds of one-stage high pressure apparatus and the two-stage apparatus based on hinge-type cubic-anvil press, the one-stage high pressure apparatus and the two-stage apparatus using cemented carbide as anvils could generate pressures up to about 9 GPa and 20 GPa respectively. This article mainly reviews the mechanics structure, design of cell assembly, pressure and temperature calibration, design and preparation of the sintered diamond anvils and pressure calibration to 35 GPa using sintered diamond as two-stage anvils about the one-stage high pressure apparatus and the two-stage apparatus designed in our laboratory.

     

  • loading
  • Irifune T, Kurio A, Sakamoto S, et al. Materials: Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421: 599-600.
    Qin J Q, He D W, Wang J H, et al. Is Rhenium diboride a superhard material? [J]. Adv Mater, 2008, 20(24): 4780-4783.
    Tian Y J, Xu B, Yu D L, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493: 385-388.
    Xu C, He D W, Wang H K, et al. Nano-polycrystalline diamond formation under ultra-high pressure [J]. Int J Refract Metals Hard Mater, 2013, 36: 232-237.
    Oganov A R, Ono S. Theoretical and experimental evidence for a post-perovskitephase of MgSiO3 in Earth's D layer [J]. Nature, 2004, 430: 445-448.
    Ma Y M, Eremets M, Oganov A R, et al. Transparent dense sodium [J]. Nature, 2009, 458: 182-185.
    Hemley R J, Soos Z G, Hanfland M, et al. Charge-transfer states in dense hydrogen charge-transfer states in dense hydrogen [J]. Nature, 1994, 369: 384-387.
    Wang H K, He D W, Xu C, et al. Calibration of pressure to 35 GPa for the cubic press using the diamond-cemented carbide compound anvil [J]. Acta Phys Sin, 2013, 62(18): 180703. (in Chinese)
    王海阔, 贺端威, 许超, 等. 复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35 GPa [J]. 物理学报, 2013, 62(18): 180703.
    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nat Commun, 2012, 3: 1163.
    Jayaraman A. Ultrahigh pressures [J]. Rev Sci Instrum, 1986, 57(6): 1013-1031.
    Andrault D, Fiquet G. Synchrotron radiation and laser heating in a diamond anvil cell [J]. Rev Sci Instrum, 2001, 72(2): 1283-1288.
    Klotz S, Besson J M, Hamel G, et al. Neutron powder diffraction at pressures beyond 25 GPa [J]. Appl Phys Lett, 1995, 66(14): 1735-1737.
    Fan D W, Wei S Y, Xie H S. An in situ high-pressure X-ray diffraction experiment on hydroxyapophyllite [J]. Chinese Physics B, 2013, 22: 010702.
    Sung C M. A century of progress in the development of very high pressure apparatus for scientific research and diamond synthesis [J]. High Temp-High Press, 1997, 29: 253-293.
    He D W, Wang H K, Tan N, et al. An anvil-preformed gasket apparatus: China, 201010142804. 7 [P]. 2010-08-18. (in Chinese)
    贺端威, 王海阔, 谭宁, 等. 一种顶锤-预密封边高压装置: 中国, 201010142804. 7 [P]. 2010-08-18.
    Wang H K, He D W. A new large-volume high pressure apparatus: China, 201110091480. 3 [P]. 2011-09-21. (in Chinese)
    王海阔, 贺端威. 一种新型大腔体高压装置: 中国, 201110091480. 3 [P]. 2011-09-21.
    Li Z C, Jia X P, Huang G F, et al. FEM simulations and experimental studies of the temperature field in a large diamond crystal growth cell [J]. Chinese Physics B, 2013, 22: 014701.
    Yu G, Han Q G, Li M Z, et al. Finite element analysis of the high-pressure tungsten carbide radius-anvil [J]. Acta Phys Sin, 2012, 61: 040702. ( in Chinese)
    于歌, 韩奇钢, 李明哲, 等. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析 [J]. 物理学报, 2012, 61: 040702.
    Khvostantsev L G. A verkh-niz (up-down) toroid device for generation of high pressure [J]. High Temp-High Pressure, 1984, 16: 165-169.
    Wang H K. Development and application of pressure generation techniques based on hinge-type cubic press [D]. Chengdu: Institute of Atomic and Molecular Physics, Sichuan University, 2008: 8-13. (in Chinese)
    王海阔. 基于国产六面顶压机增压装置的压力产生极限扩展与应用 [D]. 成都: 四川大学原子分子物理研究所, 2008: 8-13.
    Wang H K, He D W, Tan N, et al. An anvil-preformed gasket system to extend the pressure range for large volume cubic presses [J]. Rev Sci Instrum, 2010, 81: 116101.
    Wang H K, He D W, Yan X Z, et al. Quantitative measurements of pressure gradients for the pyrophyllite and magnesium oxide pressure-transmitting mediums to 8 GPa in a large-volume cubic cell [J]. High Press Res, 2011, 31: 581-591.
    Wang H K, He D W. A hybrid pressure cell of pyrophyllite and magnesium oxide to extend the pressure range for large volume cubic presses [J]. High Press Res, 2012, 32: 186-194.
    Liebermann Robert C, Wang Y B. High-Pressure Research: Application to Earth and Planetary Sciences [M]. Washington DC: AGU. 1992: 19.
    Tange Y, Irifune T, Funakoshi K, et al. Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils [J]. High Press Res, 2008, 28: 245-254.
    Kunimoto T, Irifune T. Pressure generation to 125 GPa using a 6-8-2 type multianvil apparatus with nano-polycrystalline diamond anvils [J]. J Phys: Conf Ser, 2010, 215: 02190.
    Wang F L, He D W, Fang L M, et al. Design and assembly of split-sphere high pressure apparatus based on the hinge-type cubic-anvil press [J]. Acta Phys Sin, 2008, 57: 5429-5434. (in Chinese)
    王福龙, 贺端威, 房雷鸣, 等. 基于铰链式六面顶压机的二级6-8型大腔体静高压装置 [J]. 物理学报, 2008, 57: 5429-5434.
    Wang W D, He D W, Wang H K, et al. Reaserch on pressure generation efficiency of 6-8 type multianvil high pressure apparatus [J]. Acta Phys Sin, 2010, 59: 3107. (in Chinese)
    王文丹, 贺端威, 王海阔, 等. 二级6-8型大腔体装置的高压发生效率机理研究 [J]. 物理学报, 2010, 59: 3107-3115.
    Guan J W, He D W, Wang H K, et al. Influence of mechanical configuration and hardness of last stage anvil on high pressure producing efficiency for octahedral cell [J]. Acta Phys Sin, 2012, 61: 100701. (in Chinese)
    管俊伟, 贺端威, 王海阔, 等. 力学结构及末级压砧硬度对八面体压腔高压发生效率的影响 [J]. 物理学报, 2012, 61: 100701.
    Daniels W B, Jones M T. Simple apparatus for the generation of pressures above 100000 atmospheres simultaneously with temperatures above 3000 ℃ [J]. Rev Sci Instrum, 1961, 32: 885-888.
    Xi L, Chen J L, Tang J J, et al. A large volume cubic press with a pressure-generating capability up to about 10 GPa [J]. High Press Res, 2012, 32: 239-254.
    Fang L M, He D W, Chen C, et al. Effect of precompression on pressure-transmitting efficiency of pyrophyllite gaskets [J]. High Press Res, 2007, 27: 367-374.
    Andersson G, Sundqvist B, Backstrom G. A high-pressure cell for electrical resistance measurements at hydrostatic pressures up to 8 GPa: Results for Bi, Ba, and Si [J]. J Appl Phys, 1989, 65(10): 3943.
    Ma H A, Jia X P, Chen L X, et al. High-pressure pyrolysis study of C3N6H6: A route to preparing bulk C3N4 [J]. J Phys Condens Matter, 2002, 14: 11269-11273.
    Wentorff R H, Bundy F P. Modern Very High Pressure Techniques [M]. London: Butterworths, 1962: 1-24.
    Duffy T S, Hemley R J, Mao H K. Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa [J]. Phys Rev Lett, 1995, 74: 1371-1374.
    Perez-Albuerne E A, Drickamer H G. Effect of high pressures on the compressibilities of seven crystals having the NaCl or CsCl structure [J]. J Chem Phys, 1965, 43: 1381-1386.
    Lloyd E C. Accurate Characterization of the High Pressure Environment: Proceedings of a Symposium Held at the National Bureau of Standards [M]. Washington, DC: NBS Special Publication, 1971: 189.
    Mao H K, Bell P M. Equations of state of MgO and -Fe under static pressure conditions [J]. J Geophys Res, 1979, 84: 4533-4536.
    Wang H K. Development and application of pressure generation techniques based on hinge-type cubic press [D]. Chengdu: Institute of Atomic and Molecular Physics, Sichuan University, 2008: 14. (in Chinese)
    王海阔. 基于国产六面顶压机增压装置的压力产生极限扩展与应用 [D]. 成都: 四川大学原子分子物理研究所, 2008: 14.
    Wang H K. Development and application of pressure generation techniques based on hinge-type cubic press [D]. Chengdu: Institute of Atomic and Molecular Physics, Sichuan University, 2008: 87-109. (in Chinese)
    王海阔. 基于国产六面顶压机增压装置的压力产生极限扩展与应用 [D]. 成都: 四川大学原子分子物理研究所, 2008: 87-109.
    L S J, Luo J T, Shu L, et al. A slide-type multianvil ultrahigh pressure apparatus and calibrations of its pressure and temperature [J]. Acta Phys Sin, 2009, 58: 6852-6857. (in Chinese)
    吕世杰, 罗建太, 苏磊, 等. 滑块式六含八超高压实验装置及其压力温度标定 [J]. 物理学报, 2009, 58: 6852-6857.
    Frost D J, Poe B T, Trnnes R G, et al. A new large-volume multianvil system [J]. Phys Earth Planet Int, 2004, 143-144: 507-514.
    Getting I C. New determination of the bismuth Ⅰ-Ⅱ equilibrium pressure: A proposed modification to the practical pressure scale [J]. Metrologia, 998, 35: 119.
    Lloyd E C. Accurate Characterization of the High-pressure Environment: Proceedings of a Symposium Held at the National Bureau of Standards [M]. Washington, DC: NBS Special Publication, 1971: 326.
    Ohtani A, Motobayashi M, Onodera A. Polymorphism of ZnTe at elevated pressure [J] . Phys Lett A, 1980, 75: 435-437.
    Ovsyannikov S V, Shchennikov V V. Application of the high-pressure thermoelectric technique for characterization of semiconductor microsamples: PbX-based compounds [J]. Solid State Commun, 2004, 37: 1151.
    Jiang J Z, Gerward L, Frost D, et al. Grain-size effect on pressure-induced semiconductor-to-metal transition in ZnS [J]. J Appl Phys, 1999, 86: 6608-6610.
    Yagi T, Akimoto S. Direct determination of coesite-stishovite transition by in-situ X-ray measurements [J]. J Appl Phys, 1976, 47: 259-270.
    Xu C, He D W, Wang H K, et al. Synthesis of nano-polycrystalline diamond under high pressure and high temperature [J]. Superhard Material Engineering, 2011, 4: 001-003. (in Chinese)
    许超, 贺端威, 王海阔, 等. 纳米聚晶金刚石的高压高温合成 [J]. 超硬材料工程, 2011, 4: 001-003.
    Kawazoe T, Nishiyama N, Nishihara Y, et al. Pressure generation to 25 GPa using a cubic anvil apparatus with a multi-anvil 6-6 assembly [J]. High Press Res, 2010, 30: 167-174.
    Wang H K, He D W, Xu C, et al. Nanostructured diamond-TiC composites with high fracture toughness [J]. J Appl Phys, 2013, 113: 043505.
    Wang H K. Development and application of pressure generation techniques based on hinge-type cubic press [D]. Chengdu: Institute of Atomic and Molecular Physics, Sichuan University, 2008: 113-129. (in Chinese)
    王海阔. 基于国产六面顶压机增压装置的压力产生极限扩展与应用 [D]. 成都: 四川大学原子分子物理研究所, 2008: 113-129.
    Lorenzana H E, Boppart H, Silvera I F. Study of pressure distributions in a megabar diamond indentor cell [J]. Rev Sci Instrum, 1988, 59: 2583-2591.
    Tange Y, Takahashi E, Funakoshi K. In situ observation of pressure-induced electrical resistance changes in zirconium: Pressure calibration points for the large volume press at 8 and 35 GPa [J]. High Press Res, 2011, 31: 413-418.
    Wang H K. Development and application of pressure generation techniques based on hinge-type cubic press [D]. Chengdu: Institute of Atomic and Molecular Physics, Sichuan University, 2008: 131-140. (in Chinese)
    王海阔. 基于国产六面顶压机增压装置的压力产生极限扩展与应用 [D]. 成都: 四川大学原子分子物理研究所, 2008: 131-140.
    Wang H K. Development and application of pressure generation techniques based on hinge-type cubic press [D]. Chengdu: Institute of Atomic and Molecular Physics, Sichuan University, 2008: 63-84. (in Chinese)
    王海阔. 基于国产六面顶压机增压装置的压力产生极限扩展与应用 [D]. 成都: 四川大学原子分子物理研究所, 2008: 63-84.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(14081) PDF downloads(1611) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return