Volume 37 Issue 6
Dec 2023
Turn off MathJax
Article Contents
FEI Yunfan, LI Kuo, ZHENG Haiyan. Synthesis of Nano-Carbon Materials by High Pressure Solid-State Topochemical Polymerization[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 060101. doi: 10.11858/gywlxb.20230749
Citation: FEI Yunfan, LI Kuo, ZHENG Haiyan. Synthesis of Nano-Carbon Materials by High Pressure Solid-State Topochemical Polymerization[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 060101. doi: 10.11858/gywlxb.20230749

Synthesis of Nano-Carbon Materials by High Pressure Solid-State Topochemical Polymerization

doi: 10.11858/gywlxb.20230749
  • Received Date: 13 Oct 2023
  • Rev Recd Date: 13 Nov 2023
  • Accepted Date: 13 Nov 2023
  • Issue Publish Date: 15 Dec 2023
  • The various hybridization states of carbon atoms endow carbon materials with complex structures and properties. Finding and developing carbon materials with new structures and realizing accurate and controllable synthesis of carbon materials are important directions in the carbon materials research area. High pressure (above 1 GPa) can effectively reduce the intermolecular distances and promote the polymerizations of unsaturated molecules, which provides a new strategy and opportunity for “bottom-up” synthesis of carbon materials. The chemical reaction under high pressure is generally the solid phase reaction and the reaction molecules are constrained by the lattice, which shows the characteristics of topochemical reaction. This means that we can adjust the reaction routes by controlling the crystal structures of reactants to synthesize carbon materials with specific structures and functions. In this review, we report the progress in the synthesis of carbon materials by high pressure solid-state topochemical polymerization, such as polyolefin, acetylenic polymer, diamond-based carbon nanothreads, carbon nanoribbons, graphane and high-charge ionic polymers, and briefly introduce the characteristics and mechanism of chemical reaction under high pressure.

     

  • loading
  • [1]
    HAN M Y, ÖZYILMAZ B, ZHANG Y B, et al. Energy band-gap engineering of graphene nanoribbons [J]. Physical Review Letters, 2007, 98(20): 206805. doi: 10.1103/PhysRevLett.98.206805
    [2]
    TAPASZTÓ L, DOBRIK G, LAMBIN P, et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography [J]. Nature Nanotechnology, 2008, 3(7): 397–401. doi: 10.1038/nnano.2008.149
    [3]
    KOSYNKIN D V, HIGGINBOTHAM A L, SINITSKII A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature, 2009, 458(7240): 872–876. doi: 10.1038/nature07872
    [4]
    JIAO L Y, ZHANG L, WANG X R, et al. Narrow graphene nanoribbons from carbon nanotubes [J]. Nature, 2009, 458(7240): 877–880. doi: 10.1038/nature07919
    [5]
    NARITA A, FENG X L, MÜLLEN K. Bottom-up synthesis of chemically precise graphene nanoribbons [J]. The Chemical Record, 2015, 15(1): 295–309. doi: 10.1002/tcr.201402082
    [6]
    YANG X Y, DOU X, ROUHANIPOUR A, et al. Two-dimensional graphene nanoribbons [J]. Journal of the American Chemical Society, 2008, 130(13): 4216–4217. doi: 10.1021/ja710234t
    [7]
    SCHWAB M G, NARITA A, HERNANDEZ Y, et al. Structurally defined graphene nanoribbons with high lateral extension [J]. Journal of the American Chemical Society, 2012, 134(44): 18169–18172. doi: 10.1021/ja307697j
    [8]
    WU J S, GHERGHEL L, WATSON M D, et al. From branched polyphenylenes to graphite ribbons [J]. Macromolecules, 2003, 36(19): 7082–7089. doi: 10.1021/ma0257752
    [9]
    YANO Y, MITOMA N, ITO H, et al. A quest for structurally uniform graphene nanoribbons: synthesis, properties, and applications [J]. The Journal of Organic Chemistry, 2020, 85(1): 4–33. doi: 10.1021/acs.joc.9b02814
    [10]
    BUNDY F, HALL H T, STRONG H M, et al. Man-made diamonds [J]. Nature, 1955, 176(4471): 51–55. doi: 10.1038/176051a0
    [11]
    BUNDY F P. Direct conversion of graphite to diamond in static pressure apparatus [J]. Science, 1962, 137(3535): 1057–1058. doi: 10.1126/science.137.3535.1057
    [12]
    IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6923): 599–600. doi: 10.1038/421599b
    [13]
    BUNDY F P, KASPER J S. Hexagonal diamond-a new form of carbon [J]. The Journal of Chemical Physics, 1967, 46(9): 3437–3446. doi: 10.1063/1.1841236
    [14]
    HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381
    [15]
    LUO K, LIU B, HU W T, et al. Coherent interfaces govern direct transformation from graphite to diamond [J]. Nature, 2022, 607(7919): 486–491. doi: 10.1038/s41586-022-04863-2
    [16]
    UTSUMI W, YAGI T. Light-transparent phase formed by room-temperature compression of graphite [J]. Science, 1991, 252(5012): 1542–1544. doi: 10.1126/science.252.5012.1542
    [17]
    DONG J J, YAO Z, YAO M G, et al. Decompression-induced diamond formation from graphite sheared under pressure [J]. Physical Review Letters, 2020, 124(6): 065701. doi: 10.1103/PhysRevLett.124.065701
    [18]
    YAGI T, UTSUMI W, YAMAKATA M A, et al. High-pressure in situ X-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature [J]. Physical Review B, 1992, 46(10): 6031–6039. doi: 10.1103/PhysRevB.46.6031
    [19]
    TAKANO K J, HARASHIMA H H H, WAKATSUKI M W M. New high-pressure phases of carbon [J]. Japanese Journal of Applied Physics, 1991, 30(5A): L860–L863. doi: 10.1143/JJAP.30.L860
    [20]
    HANFLAND M, BEISTER H, SYASSEN K. Graphite under pressure: equation of state and first-order Raman modes [J]. Physical Review B, 1989, 39(17): 12598–12603. doi: 10.1103/PhysRevB.39.12598
    [21]
    LI Q, MA Y M, OGANOV A R, et al. Superhard monoclinic polymorph of carbon [J]. Physical Review Letters, 2009, 102(17): 175506. doi: 10.1103/PhysRevLett.102.175506
    [22]
    UMEMOTO K, WENTZCOVITCH R M, SAITO S, et al. Body-centered tetragonal C4: a viable sp3 carbon allotrope [J]. Physical Review Letters, 2010, 104(12): 125504. doi: 10.1103/PhysRevLett.104.125504
    [23]
    WANG J T, CHEN C F, KAWAZOE Y. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon [J]. Physical Review Letters, 2011, 106(7): 075501. doi: 10.1103/PhysRevLett.106.075501
    [24]
    SHANG Y C, LIU Z D, DONG J J, et al. Ultrahard bulk amorphous carbon from collapsed fullerene [J]. Nature, 2021, 599(7886): 599–604. doi: 10.1038/s41586-021-03882-9
    [25]
    TANG H, YUAN X H, CHENG Y, et al. Synthesis of paracrystalline diamond [J]. Nature, 2021, 599(7886): 605–610. doi: 10.1038/s41586-021-04122-w
    [26]
    王萱, 李阔, 郑海燕, 等. 分子体系的高压化学反应 [J]. 化学通报, 2019, 82(5): 387–398. doi: 10.14159/j.cnki.0441-3776.2019.05.001

    WANG X, LI K, ZHENG H Y, et al. Chemical reactions of molecules under high pressure [J]. Chemistry, 2019, 82(5): 387–398. doi: 10.14159/j.cnki.0441-3776.2019.05.001
    [27]
    BLOCK S, WEIR C E, PIERMARINI G J. Polymorphism in benzene, naphthalene, and anthracene at high pressure [J]. Science, 1970, 169(3945): 586–587. doi: 10.1126/science.169.3945.586
    [28]
    AKELLA J, KENNEDY G C. Phase diagram of benzene to 35 kbar [J]. The Journal of Chemical Physics, 1971, 55(2): 793–796. doi: 10.1063/1.1676145
    [29]
    THIÉRY M M, LÉGER J M. High pressure solid phases of benzene. Ⅰ. Raman and X-ray studies of C6H6 at 294 K up to 25 GPa [J]. The Journal of Chemical Physics, 1988, 89(7): 4255–4271. doi: 10.1063/1.454809
    [30]
    CANSELL F, FABRE D, PETITET J P. Phase transitions and chemical transformations of benzene up to 550 ℃ and 30 GPa [J]. The Journal of Chemical Physics, 1993, 99(10): 7300–7304. doi: 10.1063/1.465711
    [31]
    CIABINI L, SANTORO M, BINI R, et al. High pressure crystal phases of benzene probed by infrared spectroscopy [J]. The Journal of Chemical Physics, 2001, 115(8): 3742–3749. doi: 10.1063/1.1388543
    [32]
    CIABINI L, GORELLI F A, SANTORO M, et al. High-pressure and high-temperature equation of state and phase diagram of solid benzene [J]. Physical Review B, 2005, 72(9): 094108. doi: 10.1103/PhysRevB.72.094108
    [33]
    PRUZAN P, CHERVIN J C, THIÉRY M M, et al. Transformation of benzene to a polymer after static pressurization to 30 GPa [J]. The Journal of Chemical Physics, 1990, 92(11): 6910–6915. doi: 10.1063/1.458278
    [34]
    CIABINI L, SANTORO M, BINI R, et al. High pressure reactivity of solid benzene probed by infrared spectroscopy [J]. The Journal of Chemical Physics, 2002, 116(7): 2928–2935. doi: 10.1063/1.1435570
    [35]
    JACKSON B R, TROUT C C, BADDING J V. UV Raman analysis of the C: H network formed by compression of benzene [J]. Chemistry of Materials, 2003, 15(9): 1820–1824. doi: 10.1021/cm021009y
    [36]
    CIABINI L, SANTORO M, BINI R, et al. High pressure photoinduced ring opening of benzene [J]. Physical Review Letters, 2002, 88(8): 085505. doi: 10.1103/PhysRevLett.88.085505
    [37]
    FITZGIBBONS T C, GUTHRIE M, XU E S, et al. Benzene-derived carbon nanothreads [J]. Nature Materials, 2015, 14(1): 43–47. doi: 10.1038/nmat4088
    [38]
    YANG X, WANG X, WANG Y D, et al. From molecules to carbon materials: high pressure induced polymerization and bonding mechanisms of unsaturated compounds [J]. Crystals, 2019, 9(10): 490. doi: 10.3390/cryst9100490
    [39]
    WIELDRAAIJER H, SCHOUTEN J A, TRAPPENIERS N J. Investigation of the phase diagrams of ethane, ethylene, and methane at high pressures [J]. High Temperatures High Pressures, 1983, 15(1): 87–92.
    [40]
    CHELAZZI D, CEPPATELLI M, SANTORO M, et al. Pressure-induced polymerization in solid ethylene [J]. The Journal of Physical Chemistry B, 2005, 109(46): 21658–21663. doi: 10.1021/jp0536495
    [41]
    CHELAZZI D, CEPPATELLI M, SANTORO M, et al. High-pressure synthesis of crystalline polyethylene using optical catalysis [J]. Nature Materials, 2004, 3(7): 470–475. doi: 10.1038/nmat1147
    [42]
    BENSON S W. Mechanism of the Diels-Alder reactions of butadiene [J]. The Journal of Chemical Physics, 1967, 46(12): 4920–4926. doi: 10.1063/1.1840657
    [43]
    MILLER G H. Thermal polymerization of butadiene to solid polymer [J]. Journal of Polymer Science, 1960, 43(142): 517–525. doi: 10.1002/pol.1960.1204314221
    [44]
    CITRONI M, CEPPATELLI M, BINI R, et al. The high-pressure chemistry of butadiene crystal [J]. The Journal of Chemical Physics, 2003, 118(4): 1815–1820. doi: 10.1063/1.1530163
    [45]
    CITRONI M, CEPPATELLI M, BINI R, et al. Laser-induced selectivity for dimerization versus polymerization of butadiene under pressure [J]. Science, 2002, 295(5562): 2058–2060. doi: 10.1126/science.1068451
    [46]
    WIBERG K B, HADAD C M, ELLISON G B, et al. Butadiene. 3. Charge distribution in electronically excited states [J]. The Journal of Physical Chemistry, 1993, 97(51): 13586–13597. doi: 10.1021/j100153a028
    [47]
    DOERING J P, MCDIARMID R. Electron impact study of the energy levels of trans-1,3-butadiene: Ⅱ. detailed analysis of valence and Rydberg transitions [J]. The Journal of Chemical Physics, 1980, 73(8): 3617–3624. doi: 10.1063/1.440587
    [48]
    CHADWICK R R, ZGIERSKI M Z, HUDSON B S. Resonance Raman scattering of butadiene: vibronic activity of a bu mode demonstrates the presence of a 1 Ag symmetry excited electronic state at low energy [J]. The Journal of Chemical Physics, 1991, 95(10): 7204–7211. doi: 10.1063/1.461397
    [49]
    AOYAGI M, OSAMURA Y, IWATA S. An MCSCF study of the low-lying states of trans-butadiene [J]. The Journal of Chemical Physics, 1985, 83(3): 1140–1148. doi: 10.1063/1.449477
    [50]
    AOYAGI M, OSAMURA Y. A theoretical study of the potential energy surface of butadiene in the excited states [J]. Journal of the American Chemical Society, 1989, 111(2): 470–474. doi: 10.1021/ja00184a010
    [51]
    CHIANG C K, GAU S C, FINCHER JR C R, et al. Polyacetylene, (CH) x : n-type and p-type doping and compensation [J]. Applied Physics Letters, 1978, 33(1): 18–20. doi: 10.1063/1.90166
    [52]
    MACDIARMID A G, HEEGER A J. Organic metals and semiconductors: the chemistry of polyacetylene, (CH) x , and its derivatives [J]. Synthetic Metals, 1980, 1(2): 101–118. doi: 10.1016/0379-6779(80)90002-8
    [53]
    WARD M D, HUANG H T, ZHU L, et al. High-pressure behavior of C2I2 and polymerization to a conductive polymer [J]. The Journal of Physical Chemistry C, 2019, 123(18): 11369–11377. doi: 10.1021/acs.jpcc.8b12161
    [54]
    MASUDA T. Substituted polyacetylenes: synthesis, properties, and functions [J]. Polymer Reviews, 2017, 57(1): 1–14. doi: 10.1080/15583724.2016.1170701
    [55]
    SAITO M A, MAEDA K, ONOUCHI H, et al. Synthesis and macromolecular helicity induction of a stereoregular polyacetylene bearing a carboxy group with natural amino acids in water [J]. Macromolecules, 2000, 33(13): 4616–4618. doi: 10.1021/ma000484j
    [56]
    MAEDA K, GOTO H, YASHIMA E. Stereospecific polymerization of propiolic acid with rhodium complexes in the presence of bases and helix induction on the polymer in water [J]. Macromolecules, 2001, 34(5): 1160–1164. doi: 10.1021/ma001651i
    [57]
    LAM J W Y, LUO J D, DONG Y P, et al. Functional polyacetylenes: synthesis, thermal stability, liquid crystallinity, and light emission of polypropiolates [J]. Macromolecules, 2002, 35(22): 8288–8299. doi: 10.1021/ma021011a
    [58]
    KISHIMOTO Y, ECKERLE P, MIYATAKE T, et al. Well-controlled polymerization of phenylacetylenes with organorhodium (Ⅰ) complexes: mechanism and structure of the polyenes [J]. Journal of the American Chemical Society, 1999, 121(51): 12035–12044. doi: 10.1021/ja991903z
    [59]
    MASUDA T, KAWAI M, HIGASHIMURA T. Polymerization of propiolic acid and its derivatives catalysed by MoCl5 [J]. Polymer, 1982, 23(5): 744–747. doi: 10.1016/0032-3861(82)90062-3
    [60]
    USANMAZ A, ALTÜRK E. Radiation induced solid-state polymerization of acetylenedicarboxylic acid [J]. Journal of Macromolecular Science, Part A, 2002, 39(5): 379–395. doi: 10.1081/MA-120003958
    [61]
    WANG X, TANG X Y, ZHANG P J, et al. Crystalline fully carboxylated polyacetylene obtained under high pressure as a Li-ion battery anode material [J]. The Journal of Physical Chemistry Letters, 2021, 12(50): 12055–12061. doi: 10.1021/acs.jpclett.1c03734
    [62]
    STOJKOVIC D, ZHANG P H, CRESPI V H. Smallest nanotube: breaking the symmetry of sp3 bonds in tubular geometries [J]. [J]. Physical Review Letters, 2001, 87(12): 125502. doi: 10.1103/PhysRevLett.87.125502
    [63]
    WEN X D, HOFFMANN R, ASHCROFT N W. Benzene under high pressure: a story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase [J]. Journal of the American Chemical Society, 2011, 133(23): 9023–9035. doi: 10.1021/ja201786y
    [64]
    OLBRICH M, MAYER P, TRAUNER D. A step toward polytwistane: synthesis and characterization of C2-symmetric tritwistane [J]. Organic & Biomolecular Chemistry, 2014, 12(1): 108–112. doi: 10.1039/C3OB42152J
    [65]
    BARUA S R, QUANZ H, OLBRICH M, et al. Polytwistane [J]. Chemistry–A European Journal, 2014, 20(6): 1638–1645. doi: 10.1002/chem.201303081
    [66]
    LI X, BALDINI M, WANG T, et al. Mechanochemical synthesis of carbon nanothread single crystals [J]. Journal of the American Chemical Society, 2017, 139(45): 16343–16349. doi: 10.1021/jacs.7b09311
    [67]
    MARYASIN B, OLBRICH M, TRAUNER D, et al. Calculated nuclear magnetic resonance spectra of polytwistane and related hydrocarbon nanorods [J]. Journal of Chemical Theory and Computation, 2015, 11(3): 1020–1026. doi: 10.1021/ct5011505
    [68]
    DUAN P, LI X, WANG T, et al. The chemical structure of carbon nanothreads analyzed by advanced solid-state NMR [J]. Journal of the American Chemical Society, 2018, 140(24): 7658–7666. doi: 10.1021/jacs.8b03733
    [69]
    WANG T, DUAN P, XU E S, et al. Constraining carbon nanothread structures by experimental and calculated nuclear magnetic resonance spectra [J]. Nano Letters, 2018, 18(8): 4934–4942. doi: 10.1021/acs.nanolett.8b01736
    [70]
    JUHL S J, WANG T, VERMILYEA B, et al. Local structure and bonding of carbon nanothreads probed by high-resolution transmission electron microscopy [J]. Journal of the American Chemical Society, 2019, 141(17): 6937–6945. doi: 10.1021/jacs.8b13405
    [71]
    XU E S, LAMMERT P E, CRESPI V H. Systematic enumeration of sp3 nanothreads [J]. Nano Letters, 2015, 15(8): 5124–5130. doi: 10.1021/acs.nanolett.5b01343
    [72]
    CHEN B, HOFFMANN R, ASHCROFT N W, et al. Linearly polymerized benzene arrays as intermediates, tracing pathways to carbon nanothreads [J]. Journal of the American Chemical Society, 2015, 137(45): 14373–14386. doi: 10.1021/jacs.5b09053
    [73]
    ROMAN R E, KWAN K, CRANFORD S W. Mechanical properties and defect sensitivity of diamond nanothreads [J]. Nano Letters, 2015, 15(3): 1585–1590. doi: 10.1021/nl5041012
    [74]
    SILVEIRA J F R V, MUNIZ A R. First-principles calculation of the mechanical properties of diamond nanothreads [J]. Carbon, 2017, 113: 260–265. doi: 10.1016/j.carbon.2016.11.060
    [75]
    CHEN M M, XIAO J, CAO C, et al. Theoretical prediction electronic properties of Group-Ⅳ diamond nanothreads [J]. AIP Advances, 2018, 8(7): 075107. doi: 10.1063/1.5040374
    [76]
    DEMINGOS P G, MUNIZ A R. Electronic and mechanical properties of partially saturated carbon and carbon nitride nanothreads [J]. The Journal of Physical Chemistry C, 2019, 123(6): 3886–3891. doi: 10.1021/acs.jpcc.8b11329
    [77]
    SILVEIRA J F R V, MUNIZ A R. Functionalized diamond nanothreads from benzene derivatives [J]. Physical Chemistry Chemical Physics, 2017, 19(10): 7132–7137. doi: 10.1039/C6CP08655A
    [78]
    ZHURAVLEV K K, TRAIKOV K, DONG Z H, et al. Raman and infrared spectroscopy of pyridine under high pressure [J]. Physical Review B, 2010, 82(6): 064116. doi: 10.1103/PhysRevB.82.064116
    [79]
    YASUZUKA T, KOMATSU K, KAGI H. A revisit to high-pressure transitions of pyridine: a new phase transition at 5 GPa and formation of a crystalline phase over 20 GPa [J]. Chemistry Letters, 2011, 40(7): 733–735. doi: 10.1246/cl.2011.733
    [80]
    LI X, WANG T, DUAN P, et al. Carbon nitride nanothread crystals derived from pyridine [J]. Journal of the American Chemical Society, 2018, 140(15): 4969–4972. doi: 10.1021/jacs.7b13247
    [81]
    DAMAY F, RODRÍGUEZ-CARVAJAL J, ANDRÉ D, et al. Orientational ordering in the low-temperature stable phases of deuterated thiophene [J]. Acta Crystallographica Section B: Structural Science, 2008, 64(5): 589–595. doi: 10.1107/S0108768108015103
    [82]
    DUNSTETTER F, ANDRÉ D, GONTHIER-VASSAL A, et al. Observation of an incommensurate phase in the stable phase sequence of deuterated thiophene by powder neutron diffraction [J]. Chemical Physics, 1993, 175(2/3): 475–482. doi: 10.1016/0301-0104(93)85174-7
    [83]
    BISWAS A, WARD M D, WANG T, et al. Evidence for orientational order in nanothreads derived from thiophene [J]. The Journal of Physical Chemistry Letters, 2019, 10(22): 7164–7171. doi: 10.1021/acs.jpclett.9b02546
    [84]
    CEPPATELLI M, SANTORO M, BINI R, et al. High pressure reactivity of solid furan probed by infrared and Raman spectroscopy [J]. The Journal of Chemical Physics, 2003, 118(3): 1499–1506. doi: 10.1063/1.1527895
    [85]
    SANTORO M, CEPPATELLI M, BINI R, et al. High-pressure photochemistry of furane crystal [J]. The Journal of Chemical Physics, 2003, 118(18): 8321–8325. doi: 10.1063/1.1565997
    [86]
    HUSS S, WU S K, CHEN B, et al. Scalable synthesis of crystalline one-dimensional carbon nanothreads through modest-pressure polymerization of furan [J]. ACS Nano, 2021, 15(3): 4134–4143. doi: 10.1021/acsnano.0c10400
    [87]
    MATSUURA B S, HUSS S, ZHENG Z X, et al. Perfect and defective 13C-furan-derived nanothreads from modest-pressure synthesis analyzed by 13C NMR [J]. Journal of the American Chemical Society, 2021, 143(25): 9529–9542. doi: 10.1021/jacs.1c03671
    [88]
    DUNNING S G, ZHU L, CHEN B, et al. Solid-state pathway control via reaction-directing heteroatoms: ordered pyridazine nanothreads through selective cycloaddition [J]. Journal of the American Chemical Society, 2022, 144(5): 2073–2078. doi: 10.1021/jacs.1c12143
    [89]
    GAO D X, TANG X Y, XU J Q, et al. Crystalline C3N3H3 tube (3, 0) nanothreads [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(17): e2201165119. doi: 10.1073/pnas.2201165119
    [90]
    WHEATLEY P J. The crystal and molecular structure of s-triazine [J]. Acta Crystallographica, 1955, 8(4): 224–226. doi: 10.1107/S0365110X55000741
    [91]
    NOBREGA M M, TEMPERINI M L A, BINI R. Probing the chemical stability of aniline under high pressure [J]. The Journal of Physical Chemistry C, 2017, 121(13): 7495–7501. doi: 10.1021/acs.jpcc.6b12924
    [92]
    NOBREGA M M, TEIXEIRA-NETO E, CAIRNS A B, et al. One-dimensional diamondoid polyaniline-like nanothreads from compressed crystal aniline [J]. Chemical Science, 2018, 9(1): 254–260. doi: 10.1039/C7SC03445H
    [93]
    WANG X, YANG X, WANG Y D, et al. From biomass to functional crystalline diamond nanothread: pressure-induced polymerization of 2,5-furandicarboxylic acid [J]. Journal of the American Chemical Society, 2022, 144(48): 21837–21842. doi: 10.1021/jacs.2c08914
    [94]
    WARD M D, TANG W S, ZHU L, et al. Controlled single-crystalline polymerization of C10H8·C10F8 under pressure [J]. Macromolecules, 2019, 52(20): 7557–7563. doi: 10.1021/acs.macromol.9b01416
    [95]
    FRIEDRICH A, COLLINGS I E, DZIUBEK K F, et al. Pressure-induced polymerization of polycyclic arene-perfluoroarene cocrystals: single crystal X-ray diffraction studies, reaction kinetics, and design of columnar hydrofluorocarbons [J]. Journal of the American Chemical Society, 2020, 142(44): 18907–18923. doi: 10.1021/jacs.0c09021
    [96]
    JORDAN R S, WANG Y, MCCURDY R D, et al. Synthesis of graphene nanoribbons via the topochemical polymerization and subsequent aromatization of a diacetylene precursor [J]. Chem, 2016, 1(1): 78–90. doi: 10.1016/j.chempr.2016.06.010
    [97]
    JORDAN R S, LI Y L, LIN C W, et al. Synthesis of N= 8 armchair graphene nanoribbons from four distinct polydiacetylenes [J]. Journal of the American Chemical Society, 2017, 139(44): 15878–15890. doi: 10.1021/jacs.7b08800
    [98]
    LI Y L, ZEE C T, LIN J B, et al. Fjord-edge graphene nanoribbons with site-specific nitrogen substitution [J]. Journal of the American Chemical Society, 2020, 142(42): 18093–18102. doi: 10.1021/jacs.0c07657
    [99]
    ZHANG P J, TANG X Y, WANG Y D, et al. Distance-selected topochemical dehydro-Diels-Alder reaction of 1,4-diphenylbutadiyne toward crystalline graphitic nanoribbons [J]. Journal of the American Chemical Society, 2020, 142(41): 17662–17669. doi: 10.1021/jacs.0c08274
    [100]
    LI Y P, TANG X Y, ZHANG P J, et al. Scalable high-pressure synthesis of sp2–sp3 carbon nanoribbon via [4+2] polymerization of 1,3,5-triethynylbenzene [J]. The Journal of Physical Chemistry Letters, 2021, 12(30): 7140–7145. doi: 10.1021/acs.jpclett.1c01945
    [101]
    SANTORO M, CIABINI L, BINI R, et al. High-pressure polymerization of phenylacetylene and of the benzene and acetylene moieties [J]. Journal of Raman Spectroscopy, 2003, 34(7/8): 557–566. doi: 10.1002/jrs.1024
    [102]
    TANG W S, STROBEL T A. Evidence for functionalized carbon nanothreads from π-stacked, para-disubstituted benzenes [J]. The Journal of Physical Chemistry C, 2020, 124(45): 25062–25070. doi: 10.1021/acs.jpcc.0c06715
    [103]
    BROWN C J. A refinement of the crystal structure of azobenzene [J]. Acta Crystallographica, 1966, 21(1): 146–152. doi: 10.1107/S0365110X66002445
    [104]
    ROMI S, FANETTI S, ALABARSE F, et al. Synthesis of double core chromophore-functionalized nanothreads by compressing azobenzene in a diamond anvil cell [J]. Chemical Science, 2021, 12(20): 7048–7057. doi: 10.1039/D0SC06968J
    [105]
    ZHANG P J, GAO D X, TANG X Y, et al. Ordered van der Waals hetero-nanoribbon from pressure-induced topochemical polymerization of azobenzene [J]. Journal of the American Chemical Society, 2023, 145(12): 6845–6852. doi: 10.1021/jacs.2c13753
    [106]
    SAKASHITA M, YAMAWAKI H, AOKI K. FT-IR study of the solid state polymerization of acetylene under pressure [J]. The Journal of Physical Chemistry, 1996, 100(23): 9943–9947. doi: 10.1021/jp960306l
    [107]
    CEPPATELLI M, SANTORO M, BINI R, et al. Fourier transform infrared study of the pressure and laser induced polymerization of solid acetylene [J]. The Journal of Chemical Physics, 2000, 113(14): 5991–6000. doi: 10.1063/1.1288800
    [108]
    TROUT C C, BADDING J V. Solid state polymerization of acetylene at high pressure and low temperature [J]. The Journal of Physical Chemistry A, 2000, 104(34): 8142–8145. doi: 10.1021/jp000198+
    [109]
    SUN J M, DONG X, WANG Y J, et al. Pressure-induced polymerization of acetylene: structure-directed stereoselectivity and a possible route to graphane [J]. Angewandte Chemie, 2017, 129(23): 6653–6657. doi: 10.1002/ange.201702685
    [110]
    WANG Y J, WANG L J, ZHENG H Y, et al. Phase transitions and polymerization of C6H6−C6F6 cocrystal under extreme conditions [J]. The Journal of Physical Chemistry C, 2016, 120(51): 29510–29519. doi: 10.1021/acs.jpcc.6b11245
    [111]
    WANG Y J, DONG X, TANG X Y, et al. Pressure-induced Diels-Alder reactions in C6H6−C6F6 cocrystal towards graphane structure [J]. Angewandte Chemie International Edition, 2019, 58(5): 1468–1473. doi: 10.1002/anie.201813120
    [112]
    EFTHIMIOPOULOS I, KUNC K, VAZHENIN G V, et al. Structural transformation and vibrational properties of BaC2 at high pressure [J]. Physical Review B, 2012, 85(5): 054105. doi: 10.1103/PhysRevB.85.054105
    [113]
    SREPUSHARAWOOT P, BLOMQVIST A, ARAÚJO C M, et al. One-dimensional polymeric carbon structure based on five-membered rings in alkaline earth metal dicarbides BeC2 and MgC2 [J]. Physical Review B, 2010, 82(12): 125439. doi: 10.1103/PhysRevB.82.125439
    [114]
    CHEN X Q, FU C L, FRANCHINI C. Polymeric forms of carbon in dense lithium carbide [J]. Journal of Physics: Condensed Matter, 2010, 22(29): 292201. doi: 10.1088/0953-8984/22/29/292201
    [115]
    LI Y L, LUO W, ZENG Z, et al. Pressure-induced superconductivity in CaC2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(23): 9289–9294. doi: 10.1073/pnas.1307384110
    [116]
    KULKARNI A, DOLL K, SCHÖN J C, et al. Global exploration of the enthalpy landscape of calcium carbide [J]. The Journal of Physical Chemistry B, 2010, 114(47): 15573–15581. doi: 10.1021/jp1028504
    [117]
    BENSON D, LI Y L, LUO W, et al. Lithium and calcium carbides with polymeric carbon structures [J]. Inorganic Chemistry, 2013, 52(11): 6402–6406. doi: 10.1021/ic4002219
    [118]
    ZHENG H Y, WANG L J, LI K, et al. Pressure induced polymerization of acetylide anions in CaC2 and 107 fold enhancement of electrical conductivity [J]. Chemical Science, 2017, 8(1): 298–304. doi: 10.1039/C6SC02830F
    [119]
    WANG L J, DONG X, WANG Y J, et al. Pressure-induced polymerization and disproportionation of Li2C2 accompanied with irreversible conductivity enhancement [J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 4241–4245. doi: 10.1021/acs.jpclett.7b01779
    [120]
    EFTHIMIOPOULOS I, BENSON D E, KONAR S, et al. Structural transformations of Li2C2 at high pressures [J]. Physical Review B, 2015, 92(6): 064111. doi: 10.1103/PhysRevB.92.064111
    [121]
    LIN Y Z, STROBEL T A, COHEN R E. Structural diversity in lithium carbides [J]. Physical Review B, 2015, 92(21): 214106. doi: 10.1103/PhysRevB.92.214106
    [122]
    DONG X, WANG L J, LI K, et al. Tailored synthesis of the narrowest zigzag graphene nanoribbon structure by compressing the lithium acetylide under high temperature [J]. The Journal of Physical Chemistry C, 2018, 122(35): 20506–20512. doi: 10.1021/acs.jpcc.8b04081
    [123]
    HAN J, TANG X Y, WANG Y D, et al. Pressure-induced polymerization of monosodium acetylide: a radical reaction initiated topochemically [J]. The Journal of Physical Chemistry C, 2019, 123(50): 30746–30753. doi: 10.1021/acs.jpcc.9b09698
    [124]
    CHEN J Y, YOO C S. Physical and chemical transformations of sodium cyanide at high pressures [J]. The Journal of Chemical Physics, 2009, 131(14): 144507. doi: 10.1063/1.3245861
    [125]
    HECKATHORN J W, KRUGER M B, GERLICH D, et al. High-pressure behavior of the alkali cyanides KCN and NaCN [J]. Physical Review B, 1999, 60(2): 979–983. doi: 10.1103/PhysRevB.60.979
    [126]
    STRÖSSNER K, HOCHHEIMER H D, HÖNLE W, et al. High-pressure Raman and X-ray studies of the alkali cyanides up to 27 GPa [J]. The Journal of Chemical Physics, 1985, 83(5): 2435–2440. doi: 10.1063/1.449289
    [127]
    CATAFESTA J, HAINES J, ZORZI J E, et al. Pressure-induced amorphization and decomposition of Fe[Co(CN)6] [J]. Physical Review B, 2008, 77(6): 064104. doi: 10.1103/PhysRevB.77.064104
    [128]
    LIU X J, MORITOMO Y, MATSUDA T, et al. Pressure-induced octahedral rotation in RbMn[Fe(CN)6] [J]. Journal of the Physical Society of Japan, 2009, 78(1): 013602. doi: 10.1143/JPSJ.78.013602
    [129]
    MATSUDA T, LIU X J, SHIBATA T, et al. Pressure-induced phase transition in Zn-Fe prussian blue lattice [J]. Journal of the Physical Society of Japan, 2009, 78(10): 105002. doi: 10.1143/JPSJ.78.105002
    [130]
    MORITOMO Y, HANAWA M, OHISHI Y, et al. Pressure and photoinduced transformation into a metastable phase in RbMn[Fe(CN)6] [J]. Physical Review B, 2003, 68(14): 144106. doi: 10.1103/PhysRevB.68.144106
    [131]
    LI K, ZHENG H Y, IVANOV I N, et al. K3Fe(CN)6: pressure-induced polymerization and enhanced conductivity [J]. The Journal of Physical Chemistry C, 2013, 117(46): 24174–24180. doi: 10.1021/jp407429z
    [132]
    FIGGIS B N, SKELTON B W, WHITE A H. Crystal structures of the simple monoclinic and orthorhombic polytypes of tripotassium hexacyanoferrate (Ⅲ) [J]. Australian Journal of Chemistry, 1978, 31(6): 1195–1199. doi: 10.1071/CH9781195
    [133]
    LI K, ZHENG H Y, WANG L J, et al. K3Fe(CN)6 under external pressure: dimerization of CN coupled with electron transfer to Fe (Ⅲ) [J]. The Journal of Physical Chemistry C, 2015, 119(39): 22351–22356. doi: 10.1021/acs.jpcc.5b06793
    [134]
    LI K, ZHENG H Y, HATTORI T, et al. Synthesis, structure, and pressure-induced polymerization of Li3Fe(CN)6 accompanied with enhanced conductivity [J]. Inorganic Chemistry, 2015, 54(23): 11276–11282. doi: 10.1021/acs.inorgchem.5b01851
    [135]
    BIRADHA K, SANTRA R. Crystal engineering of topochemical solid state reactions [J]. Chemical Society Reviews, 2013, 42(3): 950–967. doi: 10.1039/C2CS35343A
    [136]
    LI F, XU J Q, WANG Y J, et al. Pressure-induced polymerization: addition and condensation reactions [J]. Molecules, 2021, 26(24): 7581. doi: 10.3390/molecules26247581
    [137]
    TANG X Y, DONG X, ZHANG C F, et al. Triggering dynamics of acetylene topochemical polymerization [J]. Matter and Radiation at Extremes, 2023, 8(5): 058402. doi: 10.1063/5.0151609
    [138]
    CIABINI L, SANTORO M, GORELLI F A, et al. Triggering dynamics of the high-pressure benzene amorphization [J]. Nature Materials, 2007, 6(1): 39–43. doi: 10.1038/nmat1803
    [139]
    AOKI K, BAER B J, CYNN H C, et al. High-pressure Raman study of one-dimensional crystals of the very polar molecule hydrogen cyanide [J]. Physical Review B, 1990, 42(7): 4298–4303. doi: 10.1103/PhysRevB.42.4298
    [140]
    SCHETTINO V, BINI R. Molecules under extreme conditions: chemical reactions at high pressure [J]. Physical Chemistry Chemical Physics, 2003, 5(10): 1951–1965. doi: 10.1039/b301381b
    [141]
    ZHENG H Y, LI K, CODY G D, et al. Polymerization of acetonitrile via a hydrogen transfer reaction from CH3 to CN under extreme conditions [J]. Angewandte Chemie International Edition, 2016, 55(39): 12040–12044. doi: 10.1002/anie.201606198
    [142]
    ZHANG P J, TANG X Y, ZHANG C F, et al. Pressure-induced hydrogen transfer in 2-butyne via a double CH··· π aromatic transition state [J]. The Journal of Physical Chemistry Letters, 2022, 13(18): 4170–4175. doi: 10.1021/acs.jpclett.2c00877
    [143]
    LU T, CHEN Q X. Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions [J]. Chemistry Methods, 2021, 1(5): 231–239. doi: 10.1002/cmtd.202100007
    [144]
    YANG X, LI Y P, WANG Y J, et al. Chemical transformations of n-hexane and cyclohexane under the upper mantle conditions [J]. Geoscience Frontiers, 2021, 12(2): 1010–1017. doi: 10.1016/j.gsf.2020.06.006
    [145]
    WANG Y D, YANG X, TANG X Y, et al. Pressure gradient squeezing hydrogen out of MnOOH: thermodynamics and electrochemistry [J]. The Journal of Physical Chemistry Letters, 2021, 12(44): 10893–10898. doi: 10.1021/acs.jpclett.1c03382
    [146]
    WANG Y D, CHE G W, YANG X, et al. Piezovoltaics from PdH x [J]. The Journal of Physical Chemistry Letters, 2023, 14(13): 3168–3173. doi: 10.1021/acs.jpclett.3c00464
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(1)

    Article Metrics

    Article views(199) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return