JO-9C(Ⅲ)炸药的飞片冲击起爆判据参数拟合

贺翔 董海平 严楠

贺翔, 董海平, 严楠. JO-9C(Ⅲ)炸药的飞片冲击起爆判据参数拟合[J]. 高压物理学报, 2023, 37(2): 025102. doi: 10.11858/gywlxb.20220680
引用本文: 贺翔, 董海平, 严楠. JO-9C(Ⅲ)炸药的飞片冲击起爆判据参数拟合[J]. 高压物理学报, 2023, 37(2): 025102. doi: 10.11858/gywlxb.20220680
HE Xiang, DONG Haiping, YAN Nan. Parameter Fitting of Flyer Impact Initiation Criteria of JO-9C(Ⅲ) Explosive[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025102. doi: 10.11858/gywlxb.20220680
Citation: HE Xiang, DONG Haiping, YAN Nan. Parameter Fitting of Flyer Impact Initiation Criteria of JO-9C(Ⅲ) Explosive[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025102. doi: 10.11858/gywlxb.20220680

JO-9C(Ⅲ)炸药的飞片冲击起爆判据参数拟合

doi: 10.11858/gywlxb.20220680
详细信息
    作者简介:

    贺 翔(1991-),男,博士研究生,主要从事传爆序列设计研究. E-mail:18701338035@163.com

    通讯作者:

    董海平(1969-),男,博士,副教授,主要从事火工品可靠性理论与技术研究.E-mail:donghaipingphd@126.com

  • 中图分类号: O383; TJ450.1

Parameter Fitting of Flyer Impact Initiation Criteria of JO-9C(Ⅲ) Explosive

  • 摘要: 针对JO-9C(Ⅲ)炸药的冲击起爆判据参数缺失问题,结合理论模型和模拟计算结果,拟合得到了JO-9C(Ⅲ)炸药的3种不同形式的起爆判据参数。利用AUTODYN软件,建立了不同尺寸钛飞片冲击起爆JO-9C(Ⅲ)炸药的数值模型,得到不同尺寸钛飞片起爆JO-9C(Ⅲ)炸药的临界速度。根据冲击起爆理论和飞片临界起爆速度,计算出JO-9C(Ⅲ)炸药内入射冲击波的波阵面参量,再结合p-τ、James和Π-τ 3种起爆判据形式,拟合得到JO-9C(Ⅲ)炸药的起爆判据参数,起爆判据参数的拟合精度从高到低依次为Π-τp-τ、James。

     

  • 图  飞片冲击炸药的理论模型示意图

    Figure  1.  Schematic of the theoretical model of explosive impacted by a flyer

    图  起爆判据拟合流程

    Figure  2.  Fitting flowchart of initiation criteria

    图  飞片冲击起爆数值模型

    Figure  3.  Simulation model of flyer impact initiation

    图  两种炸药起爆状态下各位置处的压力-时间曲线

    Figure  4.  Pressure-time curves at different positions for two initiation states of explosives

    图  不同厚度飞片起爆JO-9C(Ⅲ)炸药的临界速度模拟结果

    Figure  5.  Simulation results of critical velocities of flyers with different thicknesses when initiating JO-9C(Ⅲ) explosive

    图  JO-9C(Ⅲ)炸药的3种起爆判据拟合曲线

    Figure  6.  Fitting curves of three initiation criteria for JO-9C(Ⅲ) explosive

    表  1  冲击波参数的实验与理论计算结果比较

    Table  1.   Comparison between experimental and theoretical results of shock wave parameters

    Materialδf/μmvf/(km·s−1)p τ
    Exp./GPaCalc./GPaError/%Exp./nsCalc./nsError/%
    Polyimide 252.9611.1[21]11.13−0.83 10.7[21]10.06−5.97
    252.849.8[8]10.436.4411.0[8]10.26−6.70
    761.845.3[8]5.432.4438.0[8]37.37−1.67
    1401.514.0[8]4.092.2175.0[8]73.54−1.95
    1651.534.1[8]4.171.5997.0[8]87.51−9.78
    2541.463.8[8]3.902.60137.0[8]134.80−1.61
    Aluminium3.03.6627.1[21]29.227.82 1.6[21]1.642.19
    3.53.3023.1[21]24.214.811.9[21]2.015.86
    4.03.1621.6[21]22.393.652.2[21]2.356.82
    4.52.9219.1[21]19.431.722.6[21]2.838.74
    5.02.7717.7[21]17.68−0.092.9[21]3.169.08
    下载: 导出CSV

    表  2  JO-9C(Ⅲ)炸药和飞片的冲击Hugoniot参数

    Table  2.   Shock Hugoniot parameters of JO-9C(Ⅲ) booster and flyers

    MaterialDensity/(g·cm−3)Intercept/(km·s−1)Slope
    JO-9C[22]1.711.5362.572
    Ti[23]4.515.2200.767
    Al[24]2.791.2905.370
    Kapton[25]1.412.7371.410
    Copper*8.933.9401.490
      Note: The material parameters of copper are from the database of AUTODYN software.
    下载: 导出CSV

    表  3  JO-9C(Ⅲ)炸药的JWL状态方程参数[28]

    Table  3.   Parameters of JWL equation of state for JO-9C(Ⅲ) explosive[28]

    Desity/(g·cm−3)State of explosiveDCJ/(m·s−1)pCJ/GPaA*/TPaB*/GPaR1R2ω*E0/(GJ·m−3)
    1.71Unreacted952−5.9414.101.410.89−0.15
    Product798326.170.650.154.601.300.3810.50
    下载: 导出CSV

    表  4  JO-9C(Ⅲ)炸药的反应速率方程参数[28]

    Table  4.   Parameters of the reaction rate equation for JO-9C(Ⅲ) explosive[28]

    Iba*x*G1c*d*y*G2egz
    440.22204000023900.2220.6672
    下载: 导出CSV

    表  5  约束和飞片的冲击状态方程参数

    Table  5.   Parameters of the shock equation of state for the constraint and flyer

    MaterialDesity/(g·cm−3)ΓC0/(km·s−1)S0
    Steel 10067.902.174.61.49
    Titanium4.511.095.20.77
    下载: 导出CSV
  • [1] WALKER F E, WASLEY R J. Critical energy for shock initiation of heterogeneous explosive [J]. Explosivstoffe, 1969, 17(1): 9–13.
    [2] WALKER F E, WASLEY R J. A General model for the shock initiation of explosives [J]. Propellants, Explosives, Pyrotechnics, 1976, 1(4): 73–80. doi: 10.1002/prep.19760010403
    [3] JAMES H R. Critical energy criterion for the shock Initiation of explosives by projectile impact [J]. Propellants, Explosives, Pyrotechnics, 1988, 13(2): 35–41. doi: 10.1002/prep.19880130202
    [4] JAMES H R. An extension to the critical energy criterion used to predict shock initiation thresholds [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(1): 8–13. doi: 10.1002/prep.19960210103
    [5] WELLE E J, MOLEK C D, WIXOM R R, et al. Microstructural effects on the ignition behavior of HMX [J]. Journal of Physics: Conference Series, 2014, 500(5): 052049. doi: 10.1088/1742-6596/500/5/052049
    [6] KIM S, MILLER C, HORIE Y, et al. Computational prediction of probabilistic ignition threshold of pressed granular octahydro-1, 3, 5, 7-tetranitro-1, 2, 3, 5-tetrazocine (HMX) under shock loading [J]. Journal of Applied Physics, 2016, 120(11): 115902. doi: 10.1063/1.4962211
    [7] BOWDEN M D, MAISEY M P. Determination of critical energy criteria for hexanitrostilbene using laser-driven flyer plates [C]//Proceedings of SPIE 7070, Optical Technologies for Arming, Safing, Fuzing, and Firing Ⅳ. San Diego: SPIE, 2008: 707004.
    [8] SCHWARZ A C. Study of factors which influence the shock-initiation sensitivity of hexanitrostilbene (HNS) [R]. Albuquerque: Sandia National Laboratories, 1981.
    [9] BOWDEN M D. A volumetric approach to shock initiation of hexanitrostilbene and pentaerythritol etranitrate [C]//Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. St. Louis, MO, USA, 2017.
    [10] 莫建军, 王桂吉, 吴刚, 等. 炸药TATB/粘结剂的短脉冲冲击起爆阈值测量 [J]. 实验力学, 2010, 25(1): 41–46.

    MO J J, WANG G J, WU G, et al. Measurement of the short-duration pulse shock initiation thresholds for TATB explosive/adhesive [J]. Journal of Experimental Mechanics, 2010, 25(1): 41–46.
    [11] 同红海, 奥成刚, 韩克华, 等. 超细HNS-Ⅳ炸药的窄脉冲起爆判据研究 [J]. 火工品, 2011(2): 32–36. doi: 10.3969/j.issn.1003-1480.2011.02.009

    TONG H H, AO C G, HAN K H, et al. Study on the short pulse initiation criterion of ultrafine HNS-Ⅳ explosive [J]. Initiators & Pyrotechnics, 2011(2): 32–36. doi: 10.3969/j.issn.1003-1480.2011.02.009
    [12] 张凡, 张蕊, 解瑞珍, 等. 凝聚态炸药冲击起爆判据的分析与评价 [J]. 北京理工大学学报, 2017, 37(Suppl 2): 21–24.

    ZHANG F, ZHANG R, XIE R Z, et al. Analysis and assessment on shock initiation criterion for condensed explosives [J]. Transactions of Beijing Institute of Technology, 2017, 37(Suppl 2): 21–24.
    [13] 钱石川, 甘强, 任志伟, 等. HNS-Ⅳ炸药一维冲击起爆判据的研究 [J]. 含能材料, 2018, 26(6): 495–501. doi: 10.11943/j.issn.1006-9941.2018.06.006

    QIAN S C, GAN Q, REN Z W, et al. Study on one-dimensional shock initiation criterion of HNS-Ⅳ explosive [J]. Chinese Journal of Energetic Materials, 2018, 26(6): 495–501. doi: 10.11943/j.issn.1006-9941.2018.06.006
    [14] 郭俊峰, 曾庆轩, 李明愉, 等. HNS-Ⅳ炸药的短脉冲冲击起爆判据 [J]. 高压物理学报, 2018, 32(2): 025101. doi: 10.11858/gywlxb.20170582

    GUO J F, ZENG Q X, LI M Y, et al. Short pulse shock initiation criteria for HNS-Ⅳ explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 025101. doi: 10.11858/gywlxb.20170582
    [15] 覃锦程, 裴红波, 李星翰, 等. 弹黏塑性热点模型的冲击起爆临界条件 [J]. 高压物理学报, 2018, 32(3): 035202. doi: 10.11858/gywlxb.20170656

    QIN J C, PEI H B, LI X H, et al. Shock initiation thresholds of heterogeneous explosives with elastic-visco-plastic hot spot model [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035202. doi: 10.11858/gywlxb.20170656
    [16] 王万军, 祝明水, 郭菲, 等. 高压短脉冲作用下HNS-IV型炸药的全发火冲击起爆判据 [J]. 含能材料, 2020, 28(6): 569–575. doi: 10.11943/CJEM2019234

    WANG W J, ZHU M S, GUO F, et al. Parameters of the all-fire shock initiation criterion for HNS-Ⅳ explosive under the impact of a short-duration high pressure pulse [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 569–575. doi: 10.11943/CJEM2019234
    [17] GREEN L G, NIDICK E J JR, LONGWITH J D. Shock initiation of PBXN-5 and PBX-9604: UCRL-52273 [R]. Livermore: California University, 1997.
    [18] 袁俊明, 李硕, 刘玉存, 等. 聚奥-9C装药的传爆管殉爆 [J]. 爆炸与冲击, 2018, 38(3): 632–638. doi: 10.11883/bzycj-2016-0293

    YUAN J M, LI S, LIU Y C, et al. Sympathetic detonation of booster pipe with JO-9C charge [J]. Explosion and Shock Waves, 2018, 38(3): 632–638. doi: 10.11883/bzycj-2016-0293
    [19] 孙国祥, 戴蓉兰, 陈鲁英, 等. 国内外传爆药的发展概况-传爆药的品种发展 [J]. 现代引信, 1995(1): 56–63.

    SUN G X, DAI R L, CHEN L Y, et al. Development overview of booster explosive of domestic and abroad-variety development of booster explosive [J]. Journal of Detection & Control, 1995(1): 56–63.
    [20] HASKINS P J, COOK M D. A modified criterion for the prediction of shock initiation thresholds for flyer plate and rod impacts [C]//14th International Detonation Symposium. Sevenoaks, Kent, UK, 2010.
    [21] BOWDEN M D, MAISEY M P, KNOWLES S L. Shock initiation of hexanitrostilbene at ultra-high shock pressures and critical energy determination [J]. AIP Conference Proceedings, 2012, 1426(1): 615.
    [22] HU L S, LIANG K L, LIU Y, et al. The p-t relationship between booster pellet and main charge under shock wave initiation [J]. International Journal of Energetic Materials and Chemical Propulsion, 2021, 20(2): 33–46. doi: 10.1615/IntJEnergeticMaterialsChemProp.2021037566
    [23] HUGONIST S. Report LA-4167-MS, group GMX-6 [R]. Los Alamos: Los Alamost Scientific Laboratory, 1969.
    [24] GOVEAS S G, MILLETT J C F. One-dimensional shock and detonation characterization of ultra-fine hexanitrostilbene [C]//Proceedings of the Conference of the American Physical Soceiety Topical Group on Shock Compression of Condensed Matter. Baltimore, Maryland, 2005: 1065−1068.
    [25] TARVER C M, CHIDESTER S K. Ignition and growth modeling of short pulse shock initiation experiments on fine particle hexanitrostilbene (HNS) [J]. Journal of Physics: Conference Series, 2014, 500(5): 052044. doi: 10.1088/1742-6596/500/5/052044
    [26] 郭俊峰, 曾庆轩, 李明愉, 等. 飞片材料对微装药驱动飞片形貌的影响 [J]. 高压物理学报, 2017, 31(3): 315–320. doi: 10.11858/gywlxb.2017.03.014

    GUO J F, ZENG Q X, LI M Y, et al. Influence of flyer material on morphology of flyer driven by micro charge [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 315–320. doi: 10.11858/gywlxb.2017.03.014
    [27] 孙承纬, 韦玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 286−296.

    SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industry Press, 2000: 286−296.
    [28] 杨小玉. 典型爆炸逻辑网络的数值模拟与可靠性分析研究 [D]. 北京: 北京理工大学, 2018: 9−12.

    YANG X Y. Study on the numerical simulation and reliability analysis of a typical explosive logic circuit [D]. Beijing: Beijing Institute of Technology, 2018: 9−12.
    [29] 门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础 [M]. 北京: 北京理工大学出版社, 2015: 140−141, 146.

    MEN J B, JIANG J W, WANG S Y. Fundamentals of numerical simulation for explosion and shock problems [M]. Beijing: Beijing University of Technology Press, 2015: 140−141, 146.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  236
  • PDF下载量:  44
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2022-12-31
  • 网络出版日期:  2023-04-10
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回