爆轰驱动下45钢半球壳膨胀断裂破片回收研究

张世文 陈艳 但加坤 李英雷 刘明涛 汤铁钢

张世文, 陈艳, 但加坤, 李英雷, 刘明涛, 汤铁钢. 爆轰驱动下45钢半球壳膨胀断裂破片回收研究[J]. 高压物理学报, 2023, 37(2): 025301. doi: 10.11858/gywlxb.20220665
引用本文: 张世文, 陈艳, 但加坤, 李英雷, 刘明涛, 汤铁钢. 爆轰驱动下45钢半球壳膨胀断裂破片回收研究[J]. 高压物理学报, 2023, 37(2): 025301. doi: 10.11858/gywlxb.20220665
ZHANG Shiwen, CHEN Yan, DAN Jiakun, LI Yinglei, LIU Mingtao, TANG Tiegang. Recovery of Expansion Fracture Fragments of a 45 Steel Hemispherical Shell Driven by Detonation[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025301. doi: 10.11858/gywlxb.20220665
Citation: ZHANG Shiwen, CHEN Yan, DAN Jiakun, LI Yinglei, LIU Mingtao, TANG Tiegang. Recovery of Expansion Fracture Fragments of a 45 Steel Hemispherical Shell Driven by Detonation[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025301. doi: 10.11858/gywlxb.20220665

爆轰驱动下45钢半球壳膨胀断裂破片回收研究

doi: 10.11858/gywlxb.20220665
基金项目: 国家自然科学基金(11932018,12072332)
详细信息
    作者简介:

    张世文(1971-),男,博士,副研究员,主要从事冲击动力学研究. E-mail:zhangswxueshu@163.com

    通讯作者:

    李英雷(1974-),男,博士,副研究员,主要从事冲击动力学研究. E-mail:ylli@caep.cn

  • 中图分类号: O347.3

Recovery of Expansion Fracture Fragments of a 45 Steel Hemispherical Shell Driven by Detonation

  • 摘要: 基于爆炸驱动金属半球壳产生的破片速度分布特点,设计了聚氨酯泡沫/水/聚氨酯泡沫3层介质组合的破片全回收系统。聚氨酯泡沫桶由侧壁与底部一次成型的3个泡沫桶组件拼接,结构紧凑,防水性能高。在泡沫桶底部盛水并增加一定厚度的漂浮泡沫板,加强了回收池底部防护。采用该泡沫桶开展了中心点起爆驱动45钢半球壳膨胀断裂的全回收实验。实验结果表明,破片回收率超过88%,破片内外表面辨识度高,绝大多数破片穿透泡沫桶侧壁和漂浮泡沫板并沉入水底。漂浮泡沫板和底部水层对破片速度的衰减效果明显,泡沫桶底部无破片侵彻。新设计的回收系统可回收接近2π立体角的飞散破片,表明该回收系统的适用范围涵盖了实验装置在起爆点单边的爆轰实验,拓展了该回收池可回收的破片种类。此外,新系统将竖直方向的组合衰减层总尺寸减至70 cm,为进一步优化和减小回收池尺寸提供了依据。根据破片测量数据,给出了破片质量分布结果,以及回收破片的平均厚度、平均尺寸等相关信息,并简要分析了半球壳破片与柱壳破片的特征差异,继而推算出半球壳断裂应变明显小于柱壳的断裂应变,为不同应力状态的壳层膨胀断裂机制研究提供了有益的实验数据支撑。

     

  • 图  半球壳实验装置(单位:mm)

    Figure  1.  Hemispherical shell experimental device (Unit: mm)

    图  计算模型

    Figure  2.  Numerical model

    图  半球壳和帽沿质点运动轨迹

    Figure  3.  Tracings of special points of hemispherical shell and bongrace

    图  半球壳破片回收池布局示意图(单位:mm)

    Figure  4.  Overall layout of hemispherical shell fragment recovery tank (Unit: mm)

    图  新设计的泡沫桶

    Figure  5.  New design of the foam barrel

    图  破片撞击不同介质组合的计算模型以及16 ms 时破片碰撞底板泡沫图像

    Figure  6.  Numerical model of flyer impacting on different media combinations and the result of deformation at 16 ms

    图  采用不同介质组合时钢破片速度衰减曲线

    Figure  7.  Velocity attenuation curves of steel flyer under different media combinations

    图  聚氨酯泡沫桶和回收池损伤情况

    Figure  8.  Damage of the polyurethane foam barrel and recovery tank

    图  典型回收破片的内表面(左)和外表面(右)形貌

    Figure  9.  Morphologies of the external (left) and internal (right) surface of typical recovered fragments

    图  10  半球壳回收的典型破片

    Figure  10.  Typical fragments recovered from a hemispherical shell

    图  11  破片质量-数目分布

    Figure  11.  Mass-number distribution of recovered fragments

    图  12  回收破片厚度-数目分布

    Figure  12.  Thickness-number distribution of recovered fragments

    图  13  破片平均尺寸分布

    Figure  13.  Average size distribution of recovered fragments

  • [1] 卢秋虹, 王宁, 范诚, 等. 壁厚对HR2钢柱壳爆轰加载下膨胀断裂行为的影响 [J]. 材料研究学报, 2020, 34(4): 241–246.

    LU Q H, WANG N, FAN C, et al. Effect of shell thickness on expanding fracture behavior of HR2 steel cylinders under explosive loading [J]. Chinese Journal of Materials Research, 2020, 34(4): 241–246.
    [2] 禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究 [J]. 兵工学报, 2019, 40(7): 1418−1424.

    YU F Y, DONG X L, YU X L, et al. Fracture characteristics of metal cylinder shells with different charges [J]. Acta Armamentarii, 2019, 40(7): 1418−1424.
    [3] HIROE T, FUJIWARA K, HATA H, et al. Explosively driven expansion and fragmentation behavior for cylinders, spheres and rings of 304 stainless steel [J]. Materials Science Forum, 2010: 638–642.
    [4] HIROE T, FUJIWARA K, HATA H, et al. Deformation and fragmentation behaviour of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations [J]. International Journal of Impact Engineering, 2008, 35(12): 1578–1586. doi: 10.1016/j.ijimpeng.2008.07.002
    [5] 汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. doi: 10.11883/1001-1455(2006)02-0129-05

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. doi: 10.11883/1001-1455(2006)02-0129-05
    [6] 胡八一, 董庆东, 韩长生, 等. TC4钛合金自然破片的引燃机理 [J]. 爆炸与冲击, 1995, 12(3): 254–258.

    HU B Y, DONG Q D, HAN C S, et al. Analysis of the firing mechanics for Ti-6Al-4V natural fragments [J]. Explosion and Shock Waves, 1995, 12(3): 254–258.
    [7] MOTT N F. A theory of the fragmentation of shells and bomb [C]//Fragmentation of Rings and Shells. Shock Wave and High Pressure Phenomena. Berlin, Heidelberg: Springer, 1943.
    [8] MOTT N F. Fragmentation of shells cases [J]. Proceedings of the Royal Society of London A, 1947, 189: 300–308.
    [9] GRADY D. Investigation of explosively driven fragmentation of metals-two-dimensional fracture and fragmentation of metal shells: UCRL-CR-152264 [R]. Livermore, CA: Lawrence Livermore National Laboratory, 2003.
    [10] GURNEY R W. The initial velocity of fragments from bombs, shells and grenades: BRL Report 450 [R]. MaryLand, USA: Ballistic Research Laboratory, 1943.
    [11] 金山, 汤铁钢, 孙学林, 等. 不同热处理下45钢柱壳的动态性能 [J]. 爆炸与冲击, 2006, 26(5): 423–428. doi: 10.3321/j.issn:1001-1455.2006.05.006

    JIN S, TANG T G, SUN X L, et al. Dynamic characteristics of 45 steel cylinder shell by different heat treatment conditions [J]. Explosion and Shock Waves, 2006, 26(5): 423–428. doi: 10.3321/j.issn:1001-1455.2006.05.006
    [12] 何辉, 禹海军, 王毅, 等. 4 MeV闪光X光机轫致辐射靶设计 [J]. 强激光与粒子束, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273

    HE H, YU H J, WANG Y, et al. Design of bremsstrahlung target of 4 MeV flash X-ray machine [J]. High Power Laser and Particle Beams, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273
    [13] 施将君, 刘进, 刘军. 闪光照相中X光能谱对有效吸收系数的影响 [J]. 强激光与粒子束, 2004, 16(6): 809–812.

    SHI J J, LIU J, LIU J. Effect of X-ray penetration spectrum on attenuation coefficient in flash radiography [J]. High Power Laser and Particle Beams, 2004, 16(6): 809–812.
    [14] BOLIS C, COUNILH D, LAGRANGE J M, et al. Fragmentation of a titanium alloy shell in expansion: from experiment to simulation [J]. Procedia Engineering, 2013, 58: 672-677.
    [15] 刘明涛, 汤铁钢. 爆炸加载下金属壳体膨胀断裂过程中的关键物理问题 [J]. 爆炸与冲击, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351

    LIU M T, TANG T G. Key physical problems in the expanding fracture of explosively driven metallic shells [J]. Explosion and Shock Waves, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351
    [16] ZHANG Z B, HUANG F L, CAO Y, et al. A fragments mass distribution scaling relations for fragmenting shells with variable thickness subjected to internal explosive loading [J]. International Journal of Impact Engineering, 2018, 120: 79–94. doi: 10.1016/j.ijimpeng.2018.05.013
    [17] 汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533. doi: 10.3321/j.issn:1001-1455.2003.06.008

    TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533. doi: 10.3321/j.issn:1001-1455.2003.06.008
    [18] 张绍兴, 李翔宇, 丁亮亮, 等. 聚焦式战斗部破片轴向飞散控制技术 [J]. 高压物理学报, 2018, 32(1): 015103. doi: 10.11858/gywlxb.20170512

    ZHANG S X, LI X Y, DING L L, et al. Axial dispersion control of focusing fragment warhead [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015103. doi: 10.11858/gywlxb.20170512
    [19] 史志鑫, 尹建平, 王志军, 等. 预制破片的形状对破片飞散性能影响的数值模拟研究 [J]. 兵器装备工程学报, 2017, 38(12): 31–35. doi: 10.11809/scbgxb2017.12.008

    SHI Z X, YIN J P, WANG Z J, et al. Numerical simulation of the influence of prefabricated fragments shape on fragment scattering performance [J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 31–35. doi: 10.11809/scbgxb2017.12.008
    [20] 李翔宇, 卢芳云, 王志兵, 等. 可变形定向破片战斗部模型试验和数值模拟研究 [J]. 国防科技大学学报, 2006, 28(1): 121–124. doi: 10.3969/j.issn.1001-2486.2006.01.027

    LI X Y, LU F Y, WANG Z B, et al. A study of simulation and experiment of target-directed deformable warhead model [J]. Journal of National University of Defense Technology, 2006, 28(1): 121–124. doi: 10.3969/j.issn.1001-2486.2006.01.027
    [21] 宋桂飞, 李成国, 夏福君, 等. 回收战斗部破片的新型爆炸容器及应用 [J]. 爆炸与冲击, 2008, 28(4): 372–377. doi: 10.3321/j.issn:1001-1455.2008.04.015

    SONG G F, LI C G, XIA F J, et al. A new explosion vessel used to recover warhead fragments and its application [J]. Explosion and Shock Waves, 2008, 28(4): 372–377. doi: 10.3321/j.issn:1001-1455.2008.04.015
    [22] 柏劲松, 刘坤, 张红平, 等. 基于MVPPM的流固耦合方法在爆炸容器数值计算中的应用 [J]. 高压物理学报, 2013, 27(3): 343–351. doi: 10.11858/gywlxb.2013.03.005

    BAI J S, LIU K, ZHANG H P, et al. Application of the MVPPM-based fliud-solid coupling method [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 343–351. doi: 10.11858/gywlxb.2013.03.005
    [23] 陈志闯, 李伟兵, 朱建军, 等. 40CrMnSiB钢圆柱壳体膨胀断裂中间状态回收试验研究 [J]. 兵工学报, 2018, 39(11): 2137–2144. doi: 10.3969/j.issn.1000-1093.2018.11.007

    CHEN Z C, LI W B, ZHU J J, et al. Recovery experiment study of cylindrical 40CrMnSiB steel shell in intermediate phase of expanding fracture processes [J]. Acta Armamentarii, 2018, 39(11): 2137–2144. doi: 10.3969/j.issn.1000-1093.2018.11.007
    [24] 罗渝松, 李伟兵, 陈志闯, 等. 内爆加载下金属柱壳的冻结回收方法 [J]. 爆炸与冲击, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041

    LUO Y S, LI W B, CHEN Z C, et al. A freezing recovery method for metallic cylinder shells under internal explosive loading [J]. Explosion and Shock Waves, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041
    [25] GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35: 1547–1556. doi: 10.1016/j.ijimpeng.2008.07.081
    [26] 张世文, 李英雷, 陈艳, 等. 爆炸加载下金属柱壳破片软回收技术研究 [J]. 爆炸与冲击, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449

    ZHANG S W, LI Y L, CHEN Y, et al. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading [J]. Explosion and Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449
    [27] 吴文苍, 董新龙, 庞振, 等. TA2钛合金开口柱壳外爆碎片分布研究 [J]. 力学学报, 2021, 53(6): 1795–1806. doi: 10.6052/0459-1879-21-017

    WU W C, DONG X L, PANG Z, et al. Study on fragments distribution of explosively driven cylinders for TA2 titanium alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1795–1806. doi: 10.6052/0459-1879-21-017
    [28] MERCIER S, GRANIER N, MOLINARI A, et al. Multiple necking during the dynamic expansion of hemispherical metallic shells, from experiments to modelling [J]. Journal of the Mechanics and Physics of Solids, 2010, 58: 955–982. doi: 10.1016/j.jmps.2010.05.001
    [29] 张世文, 龙建华, 贾宏志, 等. 平面冲击波在有机玻璃中的衰减测试与数值模拟 [J]. 兵工学报, 2016, 37(7): 1214–1219.

    ZHANG S W, LONG J H, JIA H Z, et al. Measuring and numerical simulation of attenuation of planar shock wave in PMMA [J]. Acta Armamentarii, 2016, 37(7): 1214–1219.
    [30] 李英雷, 刘明涛, 陈艳, 等. 线起爆膨胀柱壳实验加载及诊断技术 [J]. 爆炸与冲击, 2022, 42(12): 124101. LI Y L, LIU M T, CHEN Y, et al. A loading and diagnosis technology of expanding cylinder experiment with linear initiated explosives [J]. Explosion and Shock Waves, 2022, 42(12): 124101.
  • 加载中
图(13)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  75
  • PDF下载量:  39
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2022-10-28
  • 网络出版日期:  2023-04-05
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回