二级6-8型静高压装置厘米级腔体内置石墨加热组装的设计与实验研究

王强 贺端威 刘进 刘方明 丁未 马迎功 刘腾 李媛媛 吴京军 张佳威 寇自力

王强, 贺端威, 刘进, 刘方明, 丁未, 马迎功, 刘腾, 李媛媛, 吴京军, 张佳威, 寇自力. 二级6-8型静高压装置厘米级腔体内置石墨加热组装的设计与实验研究[J]. 高压物理学报, 2017, 31(5): 511-520. doi: 10.11858/gywlxb.2017.05.002
引用本文: 王强, 贺端威, 刘进, 刘方明, 丁未, 马迎功, 刘腾, 李媛媛, 吴京军, 张佳威, 寇自力. 二级6-8型静高压装置厘米级腔体内置石墨加热组装的设计与实验研究[J]. 高压物理学报, 2017, 31(5): 511-520. doi: 10.11858/gywlxb.2017.05.002
WANG Qiang, HE Duan-Wei, LIU Jin, LIU Fang-Ming, DING Wei, MA Ying-Gong, LIU Teng, LI Yuan-Yuan, WU Jing-Jun, ZHANG Jia-Wei, KOU Zi-Li. Design and Experimental Research of the Graphite Heating Assembly of Centimeter-Size Chamber for Two-Stage 6-8 Type Multi-Anvil High Pressure Apparatus[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 511-520. doi: 10.11858/gywlxb.2017.05.002
Citation: WANG Qiang, HE Duan-Wei, LIU Jin, LIU Fang-Ming, DING Wei, MA Ying-Gong, LIU Teng, LI Yuan-Yuan, WU Jing-Jun, ZHANG Jia-Wei, KOU Zi-Li. Design and Experimental Research of the Graphite Heating Assembly of Centimeter-Size Chamber for Two-Stage 6-8 Type Multi-Anvil High Pressure Apparatus[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 511-520. doi: 10.11858/gywlxb.2017.05.002

二级6-8型静高压装置厘米级腔体内置石墨加热组装的设计与实验研究

doi: 10.11858/gywlxb.2017.05.002
基金项目: 

国家自然科学基金 51472171

国家自然科学基金重大仪器研制项目 11427810

详细信息
    作者简介:

    王强(1990—),男,硕士,主要从事大腔体静高压装置、超硬材料合成和材料的高压物性研究. E-mail:wangqiangwsrf@outlook.com

    通讯作者:

    贺端威(1969—),男,博士,教授,主要从事大腔体静高压技术、超硬材料及高压下弹塑性行为的研究. E-mail:duanweihe@scu.edu.cn

  • 中图分类号: O521.3

Design and Experimental Research of the Graphite Heating Assembly of Centimeter-Size Chamber for Two-Stage 6-8 Type Multi-Anvil High Pressure Apparatus

  • 摘要: 基于国产铰链式六面顶压机二级6-8型静高压装置,采用去尖3节式36/20结构,设计了一种“桥式”结构的石墨加热组装,通过高压原位温度测量获取加热功率与温度的对应关系,得到了稳定的p-T(2.5~10.4 GPa,0~1 650/1 800 ℃)区域。同时样品腔体直径可以达到13 mm,实现了厘米级大样品的高温高压制备。讨论了组装的电阻与温度之间的关系,并分析了电阻变化的原因。通过对样品烧结情况的表征,来反映腔体的温度分布情况。研究工作对基于国产铰链式六面顶压机的二级6-8型静高压装置的加热设计有一定的参考意义,并具有良好的实用性。

     

  • 图  36/20石墨加热组装存在的问题

    Figure  1.  Problems of graphite heating installation in 36/20 assemble

    图  “桥式”结构石墨加热组装相关示意图

    Figure  2.  "Bridge" graphite heating installation in 36/20 assemble

    图  不同石墨加热组装相关示意图

    Figure  3.  Different graphite heating installations in 36/20 assemble

    图  温度标定的示意图

    Figure  4.  Temperature calibration

    图  不同压力下功率与腔体温度关系

    Figure  5.  Relation of heating power and temperature under different pressures

    图  不同组装的加热功率与腔体温度关系

    Figure  6.  Relation of heating power and chamber temperature in different assembles

    图  “桥式”加热组装可实现的稳定的p-T区域

    Figure  7.  p-T stable area of graphite heating installation in 36/20 assemble

    图  升温过程中电阻与温度的关系

    Figure  8.  Variation of resistance and temperature in temperature rise period

    图  降温过程中电阻与温度的关系

    Figure  9.  Variation of resistance and temperature in temperature fall period

    图  10  实验前后钼的X射线衍射图

    Figure  10.  X-ray diffraction spectra of molybdenum before and after experiment

    图  11  实验前后石墨各部分X射线衍射图

    Figure  11.  X-ray diffraction spectra of various graphite components before and after experiment

    图  12  石墨与钼反应导致电阻突变

    Figure  12.  Resistance mutation caused by graphite and molybdenum's reaction

    图  13  cBN烧结体距中心各点的硬度

    Figure  13.  Vicker's hardness of cBN compact at each point from the center

  • [1] IRIFUNE T, KURIO A, SAKAMOTO S, et al.Materials:ultrahard polycrystalline diamond from graphite[J].Nature, 2003, 421(6923):599-600. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201601001
    [2] TIAN Y, XU B, YU D, et al.Ultrahard nanotwinned cubic boron nitride[J].Nature, 2013, 493(7432):385-388. doi: 10.1038/nature11728
    [3] WANG S, HE D, WANG W, et al.Pressure calibration for the cubic press by differential thermal analysis and the high-pressure fusion curve of aluminum[J].High Pressure Res, 2009, 29(4):806-814. doi: 10.1080/08957950903335521
    [4] 赵有祥, 徐小平, 陈红, 等.环状容器内的温度校正和高压下温度相关性问题[J].物理学报, 1979, 28(6):872-876. doi: 10.3321/j.issn:1000-3290.1979.06.013

    ZHAO Y X, XU X P, CHEN H, et al.Temperature measurement in "belt" apparatus and problem of temperature correlation at high pressures [J].Acta Phys Sin, 1979, 28(6):872-876. doi: 10.3321/j.issn:1000-3290.1979.06.013
    [5] 王海阔, 贺端威, 许超, 等.基于国产铰链式六面顶压机的大腔体静高压技术研究进展[J].高压物理学报, 2013, 27(5):633-661. http://www.gywlxb.cn/CN/abstract/abstract1618.shtml

    WANG H K, HE D W, XU C, et al.Development of large volume-high static pressure techniques based on the hinge-type cubic presses[J].Chinese Journal of High Pressure Physics, 2013, 27(5):633-661. http://www.gywlxb.cn/CN/abstract/abstract1618.shtml
    [6] 亓曾笃.人造金刚石生长中的温度控制[J].高压物理学报, 1990, 4(3):204-209. http://www.gywlxb.cn/CN/abstract/abstract1618.shtml

    QI Z D.The temperature control for the crowth of sythetic diamond[J].Chinese Journal of High Pressure Physics, 1990, 4(3):204-209. http://www.gywlxb.cn/CN/abstract/abstract1618.shtml
    [7] XIE L, YONEDA A, YOSHINO T, et al.Graphite-boron composite heater in a Kawai-type apparatus:the inhibitory effect of boron oxide and countermeasures[J].High Pressure Res, 2016, 36(2):105-120. doi: 10.1080/08957959.2016.1164151
    [8] SHATSKIY A, KATSURA T, LITASOV K D, et al.High pressure generation using scaled-up Kawai-cell[J].Phys Earth Planet Inter, 2011, 189(1/2):92-108. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224900744/
    [9] 方啸虎, 温简杰, 郑日升.中国超硬材料新态势[J].超硬材料工程, 2010, 22(1):18-21. doi: 10.3969/j.issn.1673-1433.2010.01.004

    FANG X H, WEN J J, ZHENG R S, et al.New trends of china superhard materials[J].Superhard Material Engineering, 2010, 22(1):18-21. doi: 10.3969/j.issn.1673-1433.2010.01.004
    [10] 贾晓鹏.优质Ⅱa型宝石级金刚石的合成技术[J].金刚石与磨料磨具工程, 2005(3):8-11. doi: 10.3969/j.issn.1006-852X.2005.03.002

    JIA X P.Technology of growing large crystals of high quality type-Ⅱ a diamond crystal[J].Diamond & Abrasives Engineering, 2005(3):8-11. doi: 10.3969/j.issn.1006-852X.2005.03.002
    [11] 何强, 唐俊杰, 王霏, 等.一种适用于极端高温条件的六面顶压机实验组装[J].高压物理学报, 2013, 28(2):145-151. http://www.gywlxb.cn/CN/abstract/abstract1618.shtml

    HE Q, TANG J J, WANG F, et al.High temperature stable assembly designed for cubic press [J].Chinese Journal of High Pressure Physics, 2013, 28(2):145-151. http://www.gywlxb.cn/CN/abstract/abstract1618.shtml
    [12] 杜建国, 贺端威, 高春晓, 等.矿物岩石高温高压实验与理论研究[M].北京:地震出版社, 2011:8-11.

    DU J G, HE D W, GAO C X, et al.Experimental and theoretical studies of mineral and rock at high pressure and temperature [M].Beijing:Earthquake Press, 2011:8-11
    [13] 王文丹, 贺端威, 王海阔, 等.二级6-8型大腔体装置的高压发生效率机理研究[J].物理学报, 2010, 59(5):3107-3115. http://d.old.wanfangdata.com.cn/Periodical/wlxb201005030

    WANG W D, HE D W, WANG H K, et al.Research on pressure generation efficiency of 6-8 type multi-anvil high pressure apparatus [J].Acta Phys Sin, 2010, 59(5):3107-3015. http://d.old.wanfangdata.com.cn/Periodical/wlxb201005030
    [14] XU C, HE D, WANG H, et al.Nano-polycrystalline diamond formation under ultra-high pressure[J].Int J Refract Metals Hard Mater, 2013, 36(1):232-237. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229996906/
    [15] 何飞, 贺端威, 马迎功, 等.二级6-8型静高压装置厘米级腔体的设计原理与实验研究[J].高压物理学报, 2015, 29(3):161-168. http://www.gywlxb.cn/CN/abstract/abstract1799.shtml

    HE F, HE D W, MA Y G, et al.Design principles and experimental study of centimeter-scale sample chamber for two-stage 6-8 type static high pressure apparatus[J].Chinese Journal of High Pressure Physics, 2015, 29(3):161-168. http://www.gywlxb.cn/CN/abstract/abstract1799.shtml
    [16] 马迎功, 贺端威, 韩晶晶, 等.二级6-8型静高压装置厘米级腔体内置加热元件的设计与温度标定[J].高压物理学报, 2017, 31(1):61-66. http://www.gywlxb.cn/CN/abstract/abstract1930.shtml

    MA Y G, HE D W, HAN J J, et al.Design and temperature calibration for heater cell of centimeter-scale sample chamber for two-stage 6-8 type static high pressure apparatus[J].Chinese Journal of High Pressure Physics, 2017, 31(1):61-66. http://www.gywlxb.cn/CN/abstract/abstract1930.shtml
    [17] 陈晓芳, 贺端威, 王福龙, 等.基于铰链式六面顶压机的二级6-8模超高压大腔体内置加热元件的设计与温度标定[J].高压物理学报, 2009, 23(2):98-104. doi: 10.3969/j.issn.1000-5773.2009.02.004

    CHEN X F, HE D W, WANG F L, et al.Split-sphere high pressure apparatus based on hinge-type cubic-anvil press [J].Chinese Journal of High Pressure Physics, 2009, 23(2):98-104. doi: 10.3969/j.issn.1000-5773.2009.02.004
    [18] 吕世杰, 罗建太, 苏磊, 等.滑块式六含八超高压实验装置及其压力温度标定[J].物理学报, 2009, 58(10):6852-6857. http://d.old.wanfangdata.com.cn/Periodical/wlxb200910031

    LV S J, LUO J T, SU L, et al.A slide-type multianvil ultrahigh pressure apparatus and calibration of its pressure and temperature[J].Acta Phys Sin, 2009, 58(10):6852-6857. http://d.old.wanfangdata.com.cn/Periodical/wlxb200910031
    [19] 亓曾笃.金刚石生产的加热方法[J].超硬材料与宝石, 2002, 14(4):26-28. http://d.old.wanfangdata.com.cn/Periodical/zbkj200204008

    QI Z D.The heating mathods of diamond production[J].Superhard Material & GEM, 2002, 14(4):26-28. http://d.old.wanfangdata.com.cn/Periodical/zbkj200204008
    [20] HERNLUND J.A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies[J].Am Mineralog, 2006, 91(2/3):295-305.
    [21] 方啸虎, 邓福铭, 郑日升.现代超硬材料与制品[M].杭州:浙江大学出版社, 2011:181-189.

    FANG X H, DENG F M, ZHENG R S, et al.Adanced superabrasives and related products[M].Hangzhou:Zhejiang University Press, 2011:181-189.
    [22] 郭欣, 刘衍聪, 伊鹏.六面顶压机合成金刚石加热规律研究[J].人工晶体学报, 2010, 39(4):966-971. doi: 10.3969/j.issn.1000-985X.2010.04.028

    GUO X, LIU Y C, YI P.Study on the law of heating process of diamond synthesized by cubic anvil press[J].Journal of High Synthetic Crystals, 2010, 39(4):966-971. doi: 10.3969/j.issn.1000-985X.2010.04.028
    [23] 冯吉福, 林峰, 李立惟, 等.六面顶压机上不同组装结构的温度研究[J].超硬材料工程, 2009, 21(3):21-25. doi: 10.3969/j.issn.1673-1433.2009.03.005

    FENG J F, LIN F, LI L W, et al.Study on temperature of different assembly structure in cubic hinge apparatus[J].Superhard Material Engineering, 2009, 21(3):21-25. doi: 10.3969/j.issn.1673-1433.2009.03.005
    [24] 杨君刚.材料加热炉基础[M].西安:西北工业大学出版社, 2009:134-137.

    YANG J G.Material heating furnace foundation[M].Xi'an:Northwestern Industry University Press, 2009:134-137.
    [25] 王秦生.超硬材料及制品[M].郑州:郑州大学出版社, 2006:116-118.

    WANG Q S.Superhard materials and products [M].Zhengzhou:Zhengzhou University Press, 2006:116-118.
    [26] LIU Y, HE D, LEI L, et al.High pressure infiltration sintering of cBN-Si composites[J].Int J Refract Metals Hard Mater, 2015, 50:247-252. doi: 10.1016/j.ijrmhm.2015.01.006
    [27] LIU G, KOU Z, YAN X, et al.Submicron cubic boron nitride as hard as diamond[J].Appl Phys Lett, 2015, 106(12):121901. doi: 10.1063/1.4915253
    [28] FUJISAKI K, YOKOTA H, FURUSHIRO N, et al.Development of ultra-fine-grain binderless cBN tool for precision cutting of ferrous materials[J].J Mater Proc Technol, 2009, 209(15/16):5646-5652. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c325829517e40df5b37d1dfc8b69ffc3
    [29] 刘芳, 刘永刚, 谢鸿森.六面顶压机高压腔体温度场的数值模拟[J].高压物理学报, 2010, 26(2):135-140. http://www.gywlxb.cn/CN/abstract/abstract1437.shtml

    LIU F, LIU Y G, XIE H S, et al.Numerical simulation of temperature field in sample assembly od cubic press[J].Chinese Journal of High Pressure Physics, 2010, 26(2):135-140. http://www.gywlxb.cn/CN/abstract/abstract1437.shtml
    [30] 李瑞, 马红安, 韩奇钢, 等.基于ANSYS的金刚石合成腔内的温度场分析[J].吉林大学学报(工学版), 2008, 38(3):535-538. http://d.old.wanfangdata.com.cn/Periodical/jlgydxzrkxxb200803008

    LI R, MA H A, HAN Q G, et al.Analysis of temperature field in diamond synthetic chamber based on ANSYS[J].Journal of Jilin University (Engineering and Technology Edition), 2008, 38(3):535-538. http://d.old.wanfangdata.com.cn/Periodical/jlgydxzrkxxb200803008
    [31] WANG H, HE D, YAN X, et al.Quantitative measurements of pressure gradients for the pyrophyllite and magnesium oxide pressure-transmitting mediums to 8 GPa in a large-volume cubic cell[J].High Pressure Res, 2011, 31(4):581-591. doi: 10.1080/08957959.2011.614238
  • 加载中
图(13)
计量
  • 文章访问数:  7260
  • HTML全文浏览量:  2791
  • PDF下载量:  204
出版历程
  • 收稿日期:  2017-03-12
  • 修回日期:  2017-04-13

目录

    /

    返回文章
    返回