二级6-8型静高压装置厘米级腔体的设计原理与实验研究

何飞 贺端威 马迎功 晏小智 刘方明 王永坤 刘进 寇自力 彭放

何飞, 贺端威, 马迎功, 晏小智, 刘方明, 王永坤, 刘进, 寇自力, 彭放. 二级6-8型静高压装置厘米级腔体的设计原理与实验研究[J]. 高压物理学报, 2015, 29(3): 161-168. doi: 10.11858/gywlxb.2015.03.001
引用本文: 何飞, 贺端威, 马迎功, 晏小智, 刘方明, 王永坤, 刘进, 寇自力, 彭放. 二级6-8型静高压装置厘米级腔体的设计原理与实验研究[J]. 高压物理学报, 2015, 29(3): 161-168. doi: 10.11858/gywlxb.2015.03.001
HE Fei, HE Duan-Wei, MA Ying-Gong, YAN Xiao-Zhi, LIU Fang-Ming, WANG Yong-Kun, LIU Jin, KOU Zi-Li, PENG Fang. Design Principles and Experimental Study of Centimeter-Scale Sample Chamber for Two-Stage 6-8 Type Static High Pressure Apparatus[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 161-168. doi: 10.11858/gywlxb.2015.03.001
Citation: HE Fei, HE Duan-Wei, MA Ying-Gong, YAN Xiao-Zhi, LIU Fang-Ming, WANG Yong-Kun, LIU Jin, KOU Zi-Li, PENG Fang. Design Principles and Experimental Study of Centimeter-Scale Sample Chamber for Two-Stage 6-8 Type Static High Pressure Apparatus[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 161-168. doi: 10.11858/gywlxb.2015.03.001

二级6-8型静高压装置厘米级腔体的设计原理与实验研究

doi: 10.11858/gywlxb.2015.03.001
基金项目: 国家自然科学基金(51472171,11427810);国家重点基础研究发展计划(973项目)(2011CB808200)
详细信息
    作者简介:

    何飞:何  飞(1989-), 男, 硕士, 主要从事大腔体静高压装置、超硬材料合成和高压材料物性究.E-mail:420263152@qq.com

    通讯作者:

    贺端威(1969—), 男,博士,教授,主要从事高压科学与技术、超硬材料及纳米材料的研究.E-mail: duanweihe@scu.edu.cn

  • 中图分类号: O521.3

Design Principles and Experimental Study of Centimeter-Scale Sample Chamber for Two-Stage 6-8 Type Static High Pressure Apparatus

  • 摘要: 利用大腔体静高压装置的实验数据,提出了“极限压缩体积比”的概念以及腔体与组装设计的一般性原理。通过对极限压缩体积比的分析,设计出了样品腔体达到厘米级的36/20(正八面体传压介质边长为36 mm/末级压砧正三角形截角边长为20 mm)组装。采用原位电阻观测Bi(Ⅲ-Ⅴ, 7.7 GPa),ZnTe(Ⅰ-Ⅱ, 5 GPa; Ⅱ-Ⅲ, 8.9~9.5 GPa; 半导体-金属, 11.5~13.0 GPa)和ZnS(半导体-金属, 15.6 GPa)在高压下相变的方法, 标定了36/20组装的腔体压力。实验结果表明所设计样品腔的尺寸大于10 mm,压力可以达到15 GPa以上。本工作使得基于国产6×2 500 t(吨)铰链式六面顶压机的二级6-8型静高压装置在高压实验研究中具有更加广阔的应用前景。

     

  • 图  八面体传压介质被压缩的示意图

    Figure  1.  Diagram of pressure medium in the compression process

    图  组装极限压缩体积比与八面体传压介质边长的关系

    Figure  2.  Relationship between the limit compression volume ratio of assembly and the octahedral edge-length

    图  组装极限压缩体积比与末级压砧截角边长的关系

    Figure  3.  Relationship between the limit compression volume ratio of assembly and the anvil truncation edge-length

    图  36/20组装的实验装配过程及多级加载示意图

    Figure  4.  Assembly processes of assembly 36/20 and schematic of multilevel load

    图  5(a)  标压物质ZnTe、ZnS的电路连接示意图

    Figure  5(a).  Circuit connection diagram of pressure calibration for ZnTe and ZnS

    图  5(b)  标压物质Bi的电路连接示意图

    Figure  5(b).  Circuit connection diagram of pressure calibration for Bi

    图  标压物质Bi的电阻值随外部加载的典型变化曲线

    Figure  6.  Resistance of Bi changing with applied load

    图  标压物质ZnTe的电阻值随外部加载的典型变化曲线

    Figure  7.  Resistance of ZnTe changing with applied load

    图  标压物质ZnS的电阻值随外部加载的典型变化曲线

    Figure  8.  Resistance of ZnS changing with applied load

    图  36/20组装的高压发生效率

    Figure  9.  Pressure generation efficiency of assembly 36/20 versus applied load

    图  10  实验前、后,14/8与36/20组装的传压介质对比图

    Figure  10.  Comparison of pressure medium between assembly 14/8 and assembly 36/20 before and after experiment

    表  1  常用组装的具体参数

    Table  1.   The specific parameters of assemblies


    Octahedral edge-
    length/(mm)
    Anvil truncation
    edge-length/(mm)
    Limit compression
    volume ratio
    Assembly Reference
    4.70 1.50 30.76 4.7/1.5 Kubo A, et al.(2000)[18]
    6.24 2.00 30.37 6.24/2 Shatskiy A, et al.(2011)[19]
    7.00 2.50 21.95 7/2.5 Akaogi M, et al.(1999)[20]
    8.00 3.00 18.96 8/3 Bertka C M, et al.(1997)[21]
    10.00 3.50 23.32 10/3.5 Stewart A J, et al.(2006)[22]
    10.00 4.00 15.63 10/4 Liebermann R C, et al.(1992)[23]
    14.00 6.00 12.70 14/6 Shatskiy A, et al.(2011)[19]
    14.00 7.00 8.00 14/7 Shatskiy A, et al.(2011)[19]
    16.00 7.00 11.94 16/7 Shatskiy A, et al.(2011)[19]
    18.00 8.00 11.39 18/8 Frost D J, et al.(2004)[24]
    18.00 9.00 8.00 18/9 Shatskiy A, et al.(2011)[19]
    25.00 15.00 4.63 25/15 Frost D J, et al.(2004)[24]
    38.00 22.00 5.15 38/22 Irifune T, (2010)[25]
    下载: 导出CSV

    表  2  36/20组装的标压数据

    Table  2.   Data of pressure calibration for assembly 36/20

    Pressure
    calibration
    material
    Phase
    transformation
    Chamber
    pressure/
    (GPa)
    Applied
    load/
    (MN)
    Bi Ⅰ-Ⅱ 2.55 -
    Bi Ⅱ-Ⅲ 2.69 -
    Bi Ⅲ-Ⅴ 7.70 6.8
    ZnTe Ⅰ-Ⅱ 5.00 4.5
    ZnTe Ⅱ-Ⅲ 8.90-9.50 8.0
    ZnTe Semiconductor-metal 11.50-13.00 13.2
    ZnS Semiconductor-metal 15.6 19.0
    下载: 导出CSV
  • [1] Irifune T, Kurio A, Sakamoto S, et al. Materials: Ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6923): 599-600. http://europepmc.org/abstract/med/12571587
    [2] Abelson P H. A potential phosphate crisis[J]. Science, 1999, 283: 2015. doi: 10.1126/science.283.5410.2015
    [3] Wigner E, Huntington H. On the possibility of a metallic modification of hydrogen[J]. J Chem Phys, 1935, 3(12): 764-770. doi: 10.1063/1.1749590
    [4] Ma Y, Eremets M, Oganov A R. Transparent dense sodium[J]. Nature, 2009, 458(7235): 182-185. doi: 10.1038/nature07786
    [5] Hemley R J, Soos Z G, Hanfland M, et al. Charge-transfer states in dense hydrogen charge-transfer states in dense hydrogen[J]. Nature, 1994, 369(6479): 384-387. doi: 10.1038/369384a0
    [6] Oganov A R, Ono S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer[J]. Nature, 2004, 430(6998): 445-448. doi: 10.1038/nature02701
    [7] Tian Y J, Xu B, Yu D L, et al. Ultrahard nanotwinned cubic boron nitride[J]. Nature, 2013, 493(7432): 385-388. doi: 10.1038/nature11728
    [8] Ma Y M, Eremets M, Oganov A R, et al. Transparent dense sodium[J]. Nature, 2009, 458(7235): 182-185. doi: 10.1038/nature07786
    [9] Irifune T, Sumiya H. Synthesis of nano-polycrystalline diamond(NPD)and its application to ultrahigh-pressure studies[J]. Rev High Press Sci Tech, 2011, 21(4): 278-284. doi: 10.4131/jshpreview.21.278
    [10] 管俊伟, 贺端威, 王海阔, 等.力学结构及末级压砧硬度对八面体压腔高压发生效率的影响[J].物理学报, 2012, 61(10): 100701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201210014

    Guan J W, He D W, Wang H K, et al. Influence of mechanical configuration and hardness of last stage anvil on high pressure producing efficiency for octahedral cell[J]. Acta Phys Sinica, 2012, 61(10): 100701. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201210014
    [11] 郭滇生, 徐祖全, 陆振勤, 等.我国超硬材料六面顶液压机在国内外的应用现状及优势[J].超硬材料工程, 2008, 20(6): 33-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zbkj200806009

    Guo D S, Xu Z Q, Lu Z Q, et al. Application status at home and abroad and advantages of cubic hinge press for superhard abrasives[J]. Superhard Material Engineering, 2008, 20(6): 33-37. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zbkj200806009
    [12] 贺端威, 王福龙, 寇自力, 等.用于产生超高压的新型装置: 中国, 200710048839.2[P]. 2007-12-26.

    He D W, Wang F L, Kou Z L, et al. New device used to produce ultrahigh pressure: China, 200710048839.2[P]. 2007-12-26. (in Chinese)
    [13] Qin J Q, He D W, Wang J H, et al. Is rhenium diboride a superhard material?[J]. Adv Mater, 2008, 20(24): 4780-4783. doi: 10.1002/adma.200801471
    [14] Xu C, He D W, Wang H K, et al. Nano-polycrystalline diamond formation under ultra-high pressure[J]. Int J Refract Met Hard Mater, 2012, 36: 232-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7e54f550fd86d110fdc49bd918e5a9a7
    [15] Chen M, Wang S M, Zhang J, et al. Synthesis of stoichiometric and bulk CrN through a solid-state ion-exchange reaction[J]. Chem A Eur J, 2012, 18(48): 15459-15463. doi: 10.1002/chem.201202197
    [16] Wang W D, He D W, Tang M J, et al. Superhard composites of cubic silicon nitride and diamond[J]. Diam Relat Mater, 2012, 27: 49-53. http://www.sciencedirect.com/science/article/pii/S0925963512001380
    [17] 王福龙, 贺端威, 房雷鸣, 等.基于铰链式六面顶压机的二级6-8型大腔体静高压装置[J].物理学报, 2008, 57(9): 5429. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200809014

    Wang F L, He D W, Fang L M, et al. Design and assembly of split-sphere high pressure apparatus based on the hinge-type cubic-anviln press[J]. Acta Phys Sinica, 2008, 57(9): 5429. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200809014
    [18] Kubo A, Akaogi M. Post-garnet transitions in the system Mg4Si4O12-Mg3Al2Si3O12 up to 28 GPa: Phase relations of garnet, ilmenite and perovskite[J]. Phys Earth Planet Inter, 2000, 121(1): 85-102. http://www.sciencedirect.com/science/article/pii/S003192010000162X
    [19] Shatskiy A, Katsura T, Litasov K D, et al. High pressure generation using scaled-up Kawai-cell[J]. Phys Earth Planet Inter, 2011, 189(1): 92-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=935498005acbeae29baa43dedc7922be
    [20] Akaogi M, Hamada Y, Suzuki T, et al. High pressure transitions in the system MgAl2O4-CaAl2O4: A new hexagonal aluminous phase with implication for the lower mantle[J]. Phys Earth Planet Inter, 1999, 115(1): 67-77. doi: 10.1016/S0031-9201(99)00076-X
    [21] Bertka C M, Fei Y M. Mineralogy of the Martian interior up to core-mantle boundary pressures[J]. J Geophys Res B, 1997, 102(B3): 5251-5264. doi: 10.1029/96JB03270
    [22] Stewart A J, Westrenen W V, Schmidt M W, et al. Effect of gasketing and assembly design: A novel 10/3.5 mm multi-anvil assembly reaching perovskite pressures[J]. High Pressure Res, 2006, 26: 293-299. doi: 10.1080/08957950600835237
    [23] Liebermann R C, Wang Y B. High-Pressure Research: Application to Earth and Planetary Sciences[M]. Washington: American Geophysical Union, 1992: 19.
    [24] Frost D J, Poe B T, Trønnes, R G, et al. A new large-volume multianvil system[J]. Phys Earth Planet Inter, 2004, 143: 507-514. http://www.sciencedirect.com/science/article/pii/S0031920104001359
    [25] Irifune T. SOSEKI laboratory and new developments in multianvil technology[R]. Wuhan: TANDEM Symposium on Deep Earth Mineralogy, 2010.
    [26] Ohtani A, Motobayashi M, Onodera A. Polymorphism of ZnTe at elevated pressure[J]. Phys Lett A, 1980, 75(5): 435-437. doi: 10.1016/0375-9601(80)90866-X
    [27] Ovsyannikov S V, Shchennikov V V. Phase transitions investigation in ZnTe by thermoelectric power measurements at high pressure[J]. Solid State Commun, 2004, 132(5): 333-336. doi: 10.1016/j.ssc.2004.07.062
    [28] 王文丹, 贺端威, 王海阔, 等.二级6-8型大腔体装置的高压发生效率机理研究[J].物理学报, 2010, 59(5): 3107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201005030

    Wang W D, He D W, Wang H K, et al. Reaserch on pressure generation efficiency of 6-8 type multianvil high pressure apparatus[J]. Acta Phys Sinica, 2010, 59(5): 3107. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201005030
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  6681
  • HTML全文浏览量:  2120
  • PDF下载量:  267
出版历程
  • 收稿日期:  2015-03-18
  • 修回日期:  2015-03-27

目录

    /

    返回文章
    返回