预加热金属Hugoniot参数和界面温度的联合测试技术

李俊 李加波 周显明 王青松 戴诚达

李俊, 李加波, 周显明, 王青松, 戴诚达. 预加热金属Hugoniot参数和界面温度的联合测试技术[J]. 高压物理学报, 2011, 25(5): 421-428 . doi: 10.11858/gywlxb.2011.05.007
引用本文: 李俊, 李加波, 周显明, 王青松, 戴诚达. 预加热金属Hugoniot参数和界面温度的联合测试技术[J]. 高压物理学报, 2011, 25(5): 421-428 . doi: 10.11858/gywlxb.2011.05.007
LI Jun, LI Jia-Bo, ZHOU Xian-Ming, WANG Qing-Song, DAI Cheng-Da. A Combined Technique for Measuring Hugoniot and Interfacial Temperature of Preheating Metals[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 421-428 . doi: 10.11858/gywlxb.2011.05.007
Citation: LI Jun, LI Jia-Bo, ZHOU Xian-Ming, WANG Qing-Song, DAI Cheng-Da. A Combined Technique for Measuring Hugoniot and Interfacial Temperature of Preheating Metals[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 421-428 . doi: 10.11858/gywlxb.2011.05.007

预加热金属Hugoniot参数和界面温度的联合测试技术

doi: 10.11858/gywlxb.2011.05.007
详细信息
    通讯作者:

    周显明

A Combined Technique for Measuring Hugoniot and Interfacial Temperature of Preheating Metals

More Information
    Corresponding author: ZHOU Xian-Ming
  • 摘要: 发展了一种可用于轻气炮压缩实验的电阻丝预加热装置和高温靶实验测试技术,通过微热电偶丝实时测量了预加热金属的初始温度,并利用非接触式光纤探针技术实现了Hugoniot参数和界面温度的同时测量。常温下实测的金属Ta的冲击波速度D和粒子速度u与文献报道的冲击实验数据相符,而初温773 K金属Ta的(D, u)数据则低于采用Mie-Grneisen状态方程计算的结果;实测的界面温度与Lindeman熔化线和第一性原理的计算结果均符合较好。实验结果表明,所设计的高温靶装置及相关实验诊断技术是可行并有效的,为今后开展材料动态性能的温度效应研究提供了一种有效的技术途径。

     

  • Jing F Q. Introduction to Experimental Equation of State [M]. 2nd ed. Beijing: Science Press, 1999: 5. (in Chinese)
    经福谦. 实验物态方程导引 [M]. 第2版. 北京: 科学出版社, 1999: 5.
    Mitchell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum [J]. J Appl Phys, 1980, 52: 3363-3374.
    Marsh S P. LASL Shock Hugoniot Data [Z]. Los Angeles: University of California Press, 1980.
    Colvin J D, Reed B W, Jankowski A F, et al. Microstructure Morphology of Shock-Induced Melt and Rapid Resolidification in Bismuth [J]. J Appl Phys, 2007, 101: 084906(1)-084906(10).
    Li J, Zhou X M, Wang X, et al. A Combined Measurement with Pyrometer and VIASR [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 203-207. (in Chinese)
    李俊, 周显明, 王翔, 等. 多通道辐射高温计与VISAR的联合诊断技术 [J]. 高压物理学报, 2008, 22(2): 203-207.
    Asay J R. Shock-Induced Melting in Bismuth [J]. J Appl Phys, 1974, 45: 4441-4452.
    Kanel G I, Razorenov S V, Bogatch A, et al. Spall Fracture Properties of Aluminum and Magnesium at High Temperatures [J]. J Appl Phys, 1996, 79: 8310-8317.
    Davis J P, Hayes D B. Isentropic Compression Experiments on Dynamic Solidification in Tin [A]//Furnish M D, Gupta Y M, Forbes J W. Shock Compression of Condensed Matter-2003 [C]. New York: Elsevier Science Publishers, 2004: 163-166.
    Rigden S M, Ahrens T J, Stolper E M. Shock Compression of Molten Silicate: Results for a Model Basaltic Compression [J]. J Geophys Res, 1988, 93: 367-382.
    Miller G H, Ahrens T J, Stolper E M. The Equation of State of Molybdenum at 1400 ℃ [J]. J Appl Phys, 1988, 63: 4469-4475.
    Duffy T S, Ahrens T J. Free Surface Velocity Profiles in Molybdenum Shock Compressed at 1400 ℃ [A]//Schmidt S C, Shaner J W, Semara G A, et al. High-Pressure Science and Technology [C]. New York: Plenum Press, 1993: 1079-1082.
    Duffy T S, Ahrens T J. Dynamic Response of Molybdenum Shock Compressed at 1400 ℃ [J]. J Appl Phys, 1994, 76: 835-842.
    Gu Z W, Jin X G, Zhang Q F, et al. A Set of Experimental Device of Preheating Materials under Shock Compression and Shock Response of Stainless Steel with High Temperature [J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 190-197. (in Chinese)
    谷卓伟, 金孝刚, 张清福, 等. 材料预加热冲击压缩实验技术及高温下不锈钢的动态响应 [J]. 高压物理学报, 1998, 12(3): 190-197.
    Li J, Zhou X M, Li J B, et al. A Shock-Induced Phase Transformation in a LiTaO3 Crystal [J]. J Appl Phys, 2007, 102: 083503.
    Dai C D, Tan H, Hu J B, et al. Hugoniot Evaluation of the Preheated Metal from Its Principal Hugoniot [J]. J Appl Phys, 2006, 99: 056102.
    Tan H. Introduction to Experimental Shock-Wave Physics [M]. Beijing: National Defense Industry Press, 2007: 137. (in Chinese)
    谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007: 137.
    Tan H, Dai C D, Zhang L Y, et al. Method to Determine the Melting Temperatures of Metals under Megabar Shock Pressures [J]. Appl Phys Lett, 2005, 87: 221905.
    Partouche-Sebban D, Pelissier J L, Abeyta F G, et al. Measurement of the Shock-Heated Melt Curve of Lead Using Pyrometry and Reflectometry [J]. J Appl Phys, 2005, 97: 043521.
    Dai C D, Hu J B, Tan H. Hugoniot Temperature and Melting of Tantalum under Shock Compression Determined by Optical Pyrometry [J]. J Appl Phys, 2009, 106: 043519.
    Strachan A, Cagin T, Gulseren O, et al. First Principles Force Field for Metallic Tantalum [J]. Model Simul Mater Sci Eng, 2004, 12: 445-456.
    Errandonea D, Somayazulu B, Ditz R, et al. Systematics of Transition-Metal Melting [J]. Phys Rev B, 2003, 63: 132104.
  • 加载中
计量
  • 文章访问数:  7993
  • HTML全文浏览量:  294
  • PDF下载量:  625
出版历程
  • 收稿日期:  2010-08-21
  • 修回日期:  2010-12-31
  • 发布日期:  2011-10-15

目录

    /

    返回文章
    返回