-
摘要: 采用Matsui和Anderson提出的Morse型有效原子对势及导带电子热激发能贡献,通过分子动力学方法(MD)对多孔铁的冲击温度进行了数值模拟。计算时,采用了在一定冲击压力下多孔铁样品已转变为均匀介质的近似。多孔铁冲击温度的模拟结果与经合理修正后的热力学计算结果相一致。这个结果表明:在一定的冲击压力下,多孔材料样品确实存在一个热力学平衡状态下的温度值。以上结论可能也适用于更高孔隙率的样品,当然这一观点还需要更多的实验结果给予证实。Abstract: According to the assumption that porous iron sample has transformed to homogeneous medium under a given shock pressure, a Morse-type potential is used to simulate Hugoniot curve and shock temperatures of porous iron by MD method. The Morse potential has three adjustable parameters, which are determined from experimental data of iron's thermo-elastic properties by Matsui and Anderson. The simulation results are in good agreement with thermodynamic data for porous iron with a porosity of 12.1%, which implies that porous sample of a given porosity has a thermodynamic equilibrium temperature under a given shock pressure. However, whether the conclusion could be applicable to porous samples with larger porosities needs to be further verified by experiments.
-
Key words:
- porous iron /
- shock temperature /
- MD simulations /
- Morse-type potential
-
Wang Y, Ahuja R, Johansson B. Melting of Iron and Other Metals at Earth's Core Conditions: A Simplified Computational Approach [J]. Phys Rev B, 2002, 65: 014104. Jing F Q. Introduction to Experimental Equation of State(2nd) [M]. Beijing: Science Press, 1999. (in Chinese) 经福谦. 实验物态方程导引(第二版) [M]. 北京: 科学出版社, 1999. Anderson O L, Dubrovinsky L, Saxena S K, et al. Correction to Experimental Vibrational Grneisen Ratio Values for -Iron up to 330 GPa at 300 K [J]. Phys Res Lett, 2001, 28(12): 2359. Marsh S P. LASL Hugoniot Data [M]. Berkeley: University of California Press, 1980. Li X J, Zhou X M , Wang F H, et al. Restudy of Grneisen Parameter of Iron in the Pressure Range of 90~160 GPa [J]. Chin Phys Lett, 2001, 18(1): 85-87. Li X J. Study on Iron's High Pressure Melting [D]. Mianyang: China Academy of Engineering Physics, 2000. (in Chinese) 李西军. 铁高压熔化线研究 [D]. 四川绵阳: 中国工程物理研究院, 2000. Wu Q, Jing F Q. Thermodynamic Equation of State and Application to Hugoniot Predictions for Porous Materials [J]. J Appl Phys, 1996, 80(8): 4343-4349. Matsui M, Anderson O L. The Case for a Body-Centered Cubic Phase for Iron at Inner Core Conditions [J]. Phys Earth Planet Inter, 1997, 103: 55-62. Belonoshko A B, Ahuja R. Embedded-Atom Molecular Dynamic Study of Iron Melting [J]. Phys Earth Planet Inter, 1997, 102: 171-184. Durran D R. The Third-Order Adams-Bashforth Method: An Attractive Alternative to Leapfrog Time Differencing [J]. Mon Wea Rev, 1991, 119: 702-720. Shuichi Nos. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods [J]. J Chem Phys, 1984, 81(1): 511-519. Williams Q, Jeanloz R, Bass J, et al. Science, 1987, 236: 181. Yoo C S, Holmes N C, Ross M. Shock Temperatures and Melting of Iron at Earth Core Conditions [J]. Phys Rev Lett, 1993, 70(25): 3931-3934. Brown J M, McQueen R G. Phase Transitions, Grneisen Parameter, and Elasticity for Shocked Iron between 77 GPa and 400 GPa [J]. J Geophys Res, 1986, 91(B7): 7485. Li X J, Zhou X M, Wang F H, et al. Shock Compression of a Kind of Porous Iron [J]. Chinese Journal of High Pressure Physics, 2000, 14(3): 224-228. (in Chinese) 李西军, 周显明, 王藩侯, 等. 一种多孔铁的冲击压缩性 [J]. 高压物理学报, 2000, 14(3): 224-228. Li X J, Gong Z Z, Liu F S, et al. A Problem in Measurements of High Pressure Melting Curve of Iron: Influence of Melting Mechanism on the Melting Temperature [J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 221-225. (in Chinese) 李西军, 龚自正, 刘福生, 等. 铁高压熔化线的测量--熔化机理的影响 [J]. 高压物理学报, 2001, 15(3): 221-225.
点击查看大图
计量
- 文章访问数: 7560
- HTML全文浏览量: 453
- PDF下载量: 907