微秒到秒时间尺度的高压相变动力学和物性研究:回顾、进展及展望

王毫 赵婷婷 李梅 李俊龙 彭赏 刘旭强 赵博浩 陈彦龙 林传龙

王毫, 赵婷婷, 李梅, 李俊龙, 彭赏, 刘旭强, 赵博浩, 陈彦龙, 林传龙. 微秒到秒时间尺度的高压相变动力学和物性研究:回顾、进展及展望[J]. 高压物理学报, 2024, 38(3): 030101. doi: 10.11858/gywlxb.20240770
引用本文: 王毫, 赵婷婷, 李梅, 李俊龙, 彭赏, 刘旭强, 赵博浩, 陈彦龙, 林传龙. 微秒到秒时间尺度的高压相变动力学和物性研究:回顾、进展及展望[J]. 高压物理学报, 2024, 38(3): 030101. doi: 10.11858/gywlxb.20240770
WANG Hao, ZHAO Tingting, LI Mei, LI Junlong, PENG Shang, LIU Xuqiang, ZHAO Bohao, CHEN Yanlong, LIN Chuanlong. High-Pressure Phase Transitions Kinetics and Physical Properties on Second-to-Microsecond Time Scales: Review, Progress and Prospects[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030101. doi: 10.11858/gywlxb.20240770
Citation: WANG Hao, ZHAO Tingting, LI Mei, LI Junlong, PENG Shang, LIU Xuqiang, ZHAO Bohao, CHEN Yanlong, LIN Chuanlong. High-Pressure Phase Transitions Kinetics and Physical Properties on Second-to-Microsecond Time Scales: Review, Progress and Prospects[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030101. doi: 10.11858/gywlxb.20240770

微秒到秒时间尺度的高压相变动力学和物性研究:回顾、进展及展望

doi: 10.11858/gywlxb.20240770
基金项目: 国家自然科学基金(11974033)
详细信息
    作者简介:

    王 毫(1997-),男,博士研究生,主要从事动态压力下的物性表征研究. E-mail:hao.wang@hpstar.ac.cn

    通讯作者:

    林传龙(1984-),男,博士,研究员,主要从事高压相变动力学研究. E-mail:chuanlong.lin@hpstar.ac.cn

  • 中图分类号: O521.3; O521.2

High-Pressure Phase Transitions Kinetics and Physical Properties on Second-to-Microsecond Time Scales: Review, Progress and Prospects

  • 摘要: 近年来,基于金刚石对顶砧的快速加载技术(如动态金刚石对顶砧)和时间分辨探测技术的快速发展为高压科学研究开辟了新的研究方向和思路。这些技术使得科学家能够探索微秒到秒级时间尺度的高压非平衡物理过程,填补了静高压与动态冲击波实验之间的空白。本文回顾并总结了近年来在快速加载和时间分辨探测技术上的进展,详细探讨了依赖于加载速率的结构相变动力学、相变途径、亚稳相的形成、微结构、力致发光等现象。希望通过深入思考和系统归纳微秒至秒级时间尺度的高压科学问题和技术挑战,为高压科学领域的研究者提供新的启示和参考。

     

  • 图  压电陶瓷驱动dDAC:(a) 单压电陶瓷型,(b) 双压电陶瓷型,(c) 三压电陶瓷型

    Figure  1.  dDAC driven by (a) single piezoelectric activator, (b) double piezoelectric activators and (c) three piezoelectric activators

    图  单气膜控制 DAC装置

    Figure  2.  Membrane-controlled DAC devices

    图  相变势垒和相变示意图[39]

    Figure  3.  Energy barrier of the transformation kinetics and phase diagram[39]

    图  不同压缩率下水结构演化的高速光学显微镜图像

    Figure  4.  High-speed optical microscope images of water’s microstructural evolution at different compression rates

    图  不同卸压速率下由β-Sn相Ge得到的亚稳相的HRTEM图像

    Figure  5.  HRTEM images of the metastable product phases transformed from β-Sn Ge at different decompression rates

    图  基于dDAC的动态压缩下掺杂Mn的ZnS的力致发光:(a) 随时间变化的光学成像,(b) 压力依赖的力致发光,(c) 加载速率依赖的力致发光

    Figure  6.  Mechanoluminescence of Mn-doped ZnS based on dDAC compression: (a) imaging with time, and (b) pressure- and (c) compression rate-dependent mechanoluminescence

  • [1] MAO H K, BELL P M. High-pressure physics: the 1-megabar mark on the ruby R1 static pressure scale [J]. Science, 1976, 191(4229): 851–852. doi: 10.1126/science.191.4229.851
    [2] MAO H K. High-pressure physics: sustained static generation of 1.36 to 1.72 megabars [J]. Science, 1978, 200(4346): 1145–1147. doi: 10.1126/science.200.4346.1145
    [3] DUBROVINSKY L, DUBROVINSKAIA N, BYKOVA E, et al. The most incompressible metal osmium at static pressures above 750 gigapascals [J]. Nature, 2015, 525(7568): 226–229. doi: 10.1038/nature14681
    [4] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
    [5] MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007
    [6] WEHRENBERG C E, MCGONEGLE D, BOLME C, et al. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics [J]. Nature, 2017, 550(7677): 496–499. doi: 10.1038/nature24061
    [7] TURNEAURE S J, SINCLAIR N, GUPTA Y M. Real-time examination of atomistic mechanisms during shock-induced structural transformation in silicon [J]. Physical Review Letters, 2016, 117(4): 045502. doi: 10.1103/PhysRevLett.117.045502
    [8] PANDOLFI S, BROWN S B, STUBLEY P G, et al. Atomistic deformation mechanism of silicon under laser-driven shock compression [J]. Nature Communications, 2022, 13(1): 5535. doi: 10.1038/s41467-022-33220-0
    [9] MCMAHON M I. Synchrotron and FEL studies of matter at high pressures [M]//JAESCHKE E J, KHAN S, SCHNEIDER J R, et al. Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications. 2nd ed. Cham: Springer, 2020: 1857−1896.
    [10] HEMLEY R J, MAO H K, STRUZHKIN V V. Synchrotron radiation and high pressure: new light on materials under extreme conditions [J]. Journal of Synchrotron Radiation, 2005, 12(2): 135–154. doi: 10.1107/S0909049504034417
    [11] HIRAO N, KAWAGUCHI S I, HIROSE K, et al. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8 [J]. Matter and Radiation at Extremes, 2020, 5(1): 018403. doi: 10.1063/1.5126038
    [12] LIERMANN H P, KONÔPKOVÁ Z, MORGENROTH W, et al. The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA Ⅲ [J]. Journal of Synchrotron Radiation, 2015, 22(4): 908–924. doi: 10.1107/S1600577515005937
    [13] LIERMANN H P, KONÔPKOVÁ Z, APPEL K, et al. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL) [J]. Journal of Synchrotron Radiation, 2021, 28(3): 688–706. doi: 10.1107/S1600577521002551
    [14] CHANDRA SHEKAR N V, RAJAN K G. Kinetics of pressure induced structural phase transitions: a review [J]. Bulletin of Materials Science, 2001, 24(1): 1–21. doi: 10.1007/BF02704834
    [15] HABERL B, GUTHRIE M, SINOGEIKIN S V, et al. Thermal evolution of the metastable r8 and bc8 polymorphs of silicon [J]. High Pressure Research, 2015, 35(2): 99–116. doi: 10.1080/08957959.2014.1003555
    [16] LEE G W, EVANS W J, YOO C S. Dynamic pressure-induced dendritic and shock crystal growth of ice Ⅵ [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9178–9181. doi: 10.1073/pnas.0609390104
    [17] KIM Y J, LEE Y H, LEE S, et al. Shock growth of ice crystal near equilibrium melting pressure under dynamic compression [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(18): 8679–8684. doi: 10.1073/pnas.1818122116
    [18] LIN C L, LIU X Q, YONG X, et al. Temperature-dependent kinetic pathways featuring distinctive thermal-activation mechanisms in structural evolution of ice Ⅶ [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(27): 15437–15442. doi: 10.1073/pnas.2007959117
    [19] BASTEA M, BASTEA S, BECKER R. High pressure phase transformation in iron under fast compression [J]. Applied Physics Letters, 2009, 95(24): 241911. doi: 10.1063/1.3275797
    [20] BASTEA M, BASTEA S, REAUGH J E, et al. Freezing kinetics in overcompressed water [J]. Physical Review B, 2007, 75(17): 172104. doi: 10.1103/PhysRevB.75.172104
    [21] DOLAN D H, GUPTA Y M. Nanosecond freezing of water under multiple shock wave compression: optical transmission and imaging measurements [J]. The Journal of Chemical Physics, 2004, 121(18): 9050–9057. doi: 10.1063/1.1805499
    [22] DOLAN D H, JOHNSON J N, GUPTA Y M. Nanosecond freezing of water under multiple shock wave compression: continuum modeling and wave profile measurements [J]. The Journal of Chemical Physics, 2005, 123(6): 064702. doi: 10.1063/1.1993556
    [23] DOLAN D H, KNUDSON M D, HALL C A, et al. A metastable limit for compressed liquid water [J]. Nature Physics, 2007, 3(5): 339–342. doi: 10.1038/nphys562
    [24] BOETTGER J C, WALLACE D C. Metastability and dynamics of the shock-induced phase transition in iron [J]. Physical Review B, 1997, 55(5): 2840–2849. doi: 10.1103/PhysRevB.55.2840
    [25] KNUDSON M D, GUPTA Y M. Transformation kinetics for the shock wave induced phase transition in cadmium sulfide crystals [J]. Journal of Applied Physics, 2002, 91(12): 9561–9571. doi: 10.1063/1.1478790
    [26] KNUDSON M D, DESJARLAIS M P, BECKER A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium [J]. Science, 2015, 348(6242): 1455–1460. doi: 10.1126/science.aaa7471
    [27] YU P, WANG W H, WANG R J, et al. Understanding exceptional thermodynamic and kinetic stability of amorphous sulfur obtained by rapid compression [J]. Applied Physics Letters, 2009, 94(1): 011910. doi: 10.1063/1.3064125
    [28] HU Y, SU L, LIU X R, et al. Preparation of high-density nanocrystalline bulk selenium by rapid compressing of melt [J]. Chinese Physics Letters, 2010, 27(3): 038101. doi: 10.1088/0256-307X/27/3/038101
    [29] BIWER C M, QUAN A, HUSTON L Q, et al. Cinema: snap: real-time tools for analysis of dynamic diamond anvil cell experiment data [J]. Review of Scientific Instruments, 2021, 92(10): 103901. doi: 10.1063/5.0057878
    [30] DOU X M, DING K, SUN B Q. Development and application of piezoelectric driving diamond anvil cell device [J]. Review of Scientific Instruments, 2017, 88(12): 123105. doi: 10.1063/1.4996063
    [31] EVANS W J, YOO C S, LEE G W, et al. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials [J]. Review of Scientific Instruments, 2007, 78(7): 073904. doi: 10.1063/1.2751409
    [32] JENEI Z, LIERMANN H P, HUSBAND R, et al. New dynamic diamond anvil cells for tera-pascal per second fast compression X-ray diffraction experiments [J]. Review of Scientific Instruments, 2019, 90(6): 065114. doi: 10.1063/1.5098993
    [33] MÉNDEZ A S J, MARQUARDT H, HUSBAND R J, et al. A resistively-heated dynamic diamond anvil cell (RHdDAC) for fast compression X-ray diffraction experiments at high temperatures [J]. Review of Scientific Instruments, 2020, 91(7): 073906. doi: 10.1063/5.0007557
    [34] SMITH J S, SINOGEIKIN S V, LIN C L, et al. Developments in time-resolved high pressure X-ray diffraction using rapid compression and decompression [J]. Review of Scientific Instruments, 2015, 86(7): 072208. doi: 10.1063/1.4926887
    [35] SINOGEIKIN S V, SMITH J S, ROD E, et al. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells [J]. Review of Scientific Instruments, 2015, 86(7): 072209. doi: 10.1063/1.4926892
    [36] LIN C L, SMITH J S, LIU X Q, et al. Venture into water’s no man’s land: structural transformations of solid H2O under rapid compression and decompression [J]. Physical Review Letters, 2018, 121(22): 225703. doi: 10.1103/PhysRevLett.121.225703
    [37] LIN C L, LIU X Q, YANG D L, et al. Temperature- and rate-dependent pathways in formation of metastable silicon phases under rapid decompression [J]. Physical Review Letters, 2020, 125(15): 155702. doi: 10.1103/PhysRevLett.125.155702
    [38] LIN C L, SMITH J S, SINOGEIKIN S V, et al. Kinetics of the B1-B2 phase transition in KCl under rapid compression [J]. Journal of Applied Physics, 2016, 119(4): 045902. doi: 10.1063/1.4940771
    [39] LIN C L, TSE J S. High-pressure nonequilibrium dynamics on second-to-microsecond time scales: application of time-resolved X-ray diffraction and dynamic compression in ice [J]. The Journal of Physical Chemistry Letters, 2021, 12(33): 8024–8038. doi: 10.1021/acs.jpclett.1c01623
    [40] CHEN X H, ZHANG Y, YE S J, et al. Time-resolved Raman spectroscopy for monitoring the structural evolution of materials during rapid compression [J]. Review of Scientific Instruments, 2023, 94(12): 123901. doi: 10.1063/5.0172530
    [41] ZHANG L, SHI K Y, WANG Y L, et al. Unraveling the anomalous mechanoluminescence intensity change and pressure-induced red-shift for manganese-doped zinc sulfide [J]. Nano Energy, 2021, 85: 106005. doi: 10.1016/j.nanoen.2021.106005
    [42] WANG H, CHEN X H, LI J L, et al. Pressure- and rate-dependent mechanoluminescence with maximized efficiency and tunable wavelength in ZnS: Mn2+, Eu3+ [J]. ACS Applied Materials & Interfaces, 2023, 15(23): 28204–28214. doi: 10.1021/acsami.3c04093
    [43] DOLAN D H, GUPTA Y M. Time-dependent freezing of water under dynamic compression [J]. Chemical Physics Letters, 2003, 374(5/6): 608–612. doi: 10.1016/S0009-2614(03)00777-2
    [44] CHEN J Y, YOO C S. High density amorphous ice at room temperature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19): 7685–7688. doi: 10.1073/pnas.1100752108
    [45] KONG J, SHI K Y, DONG X B, et al. Expanding the pressure frontier in Grüneisen parameter measurement: study of sodium chloride [J]. Physical Review Letters, 2023, 131(26): 266101. doi: 10.1103/PhysRevLett.131.266101
    [46] TOMASINO D A, YOO C S. Solidification and crystal growth of highly compressed hydrogen and deuterium: time-resolved study under ramp compression in dynamic-diamond anvil cell [J]. Applied Physics Letters, 2013, 103(6): 061905. doi: 10.1063/1.4818311
    [47] TOMASINO D A, YOO C S. Probing dynamic crystal growth of compressed hydrogen using dynamic-DAC, time-resolved spectroscopy and highspeed micro-photography [J]. Journal of Physics: Conference Series, 2014, 500(3): 032019. doi: 10.1088/1742-6596/500/3/032019
    [48] CHEN J Y, YOO C S, EVANS W J, et al. Solidification and fcc to metastable hcp phase transition in krypton under variable compression rates [J]. Physical Review B, 2014, 90(14): 144104. doi: 10.1103/PhysRevB.90.144104
    [49] OTZEN C, LIERMANN H P, LANGENHORST F. Evidence for a rosiaite-structured high-pressure silica phase and its relation to lamellar amorphization in quartz [J]. Nature Communications, 2023, 14(1): 606. doi: 10.1038/s41467-023-36320-7
    [50] CHEN J Y, YOO C S. Formation and phase transitions of methane hydrates under dynamic loadings: compression rate dependent kinetics [J]. The Journal of Chemical Physics, 2012, 136(11): 114513. doi: 10.1063/1.3695212
    [51] HONG S M, CHEN L Y, LIU X R, et al. High pressure jump apparatus for measuring Grüneisen parameter of NaCl and studying metastable amorphous phase of poly (ethylene terephthalate) [J]. Review of Scientific Instruments, 2005, 76(5): 053905. doi: 10.1063/1.1899443
    [52] JIA R, SHAO C G, SU L, et al. Rapid compression induced solidification of bulk amorphous sulfur [J]. Journal of Physics D: Applied Physics, 2007, 40(12): 3763–3766. doi: 10.1088/0022-3727/40/12/030
    [53] ZHANG D D, LIU X R, HE Z, et al. Pressure and time dependences of the supercooled liquid-to-liquid transition in sulfur [J]. Chinese Physics Letters, 2016, 33(2): 026301. doi: 10.1088/0256-307X/33/2/026301
    [54] LIU X R, ZHANG L J, YUAN C S, et al. A study of the pressure-induced solidification of polymers [J]. Polymers, 2018, 10(8): 847. doi: 10.3390/polym10080847
    [55] CHENG H, ZHANG J R, LI Y C, et al. A convenient dynamic loading device for studying kinetics of phase transitions and metastable phases using symmetric diamond anvil cells [J]. High Pressure Research, 2018, 38(1): 32–40. doi: 10.1080/08957959.2017.1396326
    [56] HUSBAND R J, HAGEMANN J, O’BANNON E F, et al. Simultaneous imaging and diffraction in the dynamic diamond anvil cell [J]. Review of Scientific Instruments, 2022, 93(5): 053903. doi: 10.1063/5.0084480
    [57] 王碧涵, 李冰, 刘旭强, 等. 毫秒时间分辨同步辐射X射线衍射和高压快速加载装置及应用 [J]. 物理学报, 2022, 71(10): 100702. doi: 10.7498/aps.71.20212360

    WANG B H, LI B, LIU X Q, et al. Millisecond time-resolved synchrotron radiation X-ray diffraction and high-pressure rapid compression device and its application [J]. Acta Physica Sinica, 2022, 71(10): 100702. doi: 10.7498/aps.71.20212360
    [58] SU L, SHI K Y, ZHANG L, et al. Static and dynamic diamond anvil cell (s-dDAC): a bidirectional remote controlled device for static and dynamic compression/decompression [J]. Matter and Radiation at Extremes, 2022, 7(1): 018401. doi: 10.1063/5.0061583
    [59] ZHANG L, SHI K Y, WANG Y L, et al. Compression rate-dependent crystallization of pyridine [J]. The Journal of Physical Chemistry C, 2021, 125(12): 6983–6989. doi: 10.1021/acs.jpcc.1c01163
    [60] YAN J W, LIU X D, GORELLI F A, et al. Compression rate of dynamic diamond anvil cells from room temperature to 10 K [J]. Review of Scientific Instruments, 2022, 93(6): 063901. doi: 10.1063/5.0091102.doi:10.1063/5.0007557
    [61] SINGH A K. The kinetics of some pressure-induced transformations [J]. Materials Science Forum, 1985, 3: 291–306. doi: 10.4028/www.scientific.net/MSF.3.291
    [62] GLASSTONE S, LAIDLER K J, EYRING H. The theory of rate processes: the kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena [M]. New York: McGraw-Hill, 1941.
    [63] CHRISTIAN J W. The theory of transformations in metals and alloys [M]. Oxford: Pergamon, 2002.
    [64] FANFONI M, TOMELLINI M. The Johnson-Mehl-Avrami-Kohnogorov model: a brief review [J]. Nuovo Cimento D, 1998, 20(7/8): 1171–1182. doi: 10.1007/BF03185527
    [65] AVRAMI M. Kinetics of phase change. Ⅰ general theory [J]. The Journal of Chemical Physics, 1939, 7(12): 1103–1112. doi: 10.1063/1.1750380
    [66] AVRAMI M. Kinetics of phase change. Ⅱ transformation-time relations for random distribution of nuclei [J]. The Journal of Chemical Physics, 1940, 8(2): 212–224. doi: 10.1063/1.1750631
    [67] AVRAMI M. Granulation, phase change, and microstructure kinetics of phase change. Ⅲ [J]. The Journal of Chemical Physics, 1941, 9(2): 177–184. doi: 10.1063/1.1750872
    [68] TSE J S, KLUG D D. Pressure amorphized ices: an atomistic perspective [J]. Physical Chemistry Chemical Physics, 2012, 14(23): 8255–8263. doi: 10.1039/c2cp40201g
    [69] MISHIMA O. Relationship between melting and amorphization of ice [J]. Nature, 1996, 384(6609): 546–549. doi: 10.1038/384546a0
    [70] MISHIMA O, STANLEY H E. The relationship between liquid, supercooled and glassy water [J]. Nature, 1998, 396(6709): 329–335. doi: 10.1038/24540
    [71] MISHIMA O. Volume of supercooled water under pressure and the liquid-liquid critical point [J]. The Journal of Chemical Physics, 2010, 133(14): 144503. doi: 10.1063/1.3487999
    [72] MISHIMA O, CALVERT L D, WHALLEY E. ‘Melting ice’ Ⅰ at 77 K and 10 kbar: a new method of making amorphous solids [J]. Nature, 1984, 310(5976): 393–395. doi: 10.1038/310393a0
    [73] MISHIMA O, CALVERT L D, WHALLEY E. An apparently first-order transition between two amorphous phases of ice induced by pressure [J]. Nature, 1985, 314(6006): 76–78. doi: 10.1038/314076a0
    [74] LOERTING T, SALZMANN C, KOHL I, et al. A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar [J]. Physical Chemistry Chemical Physics, 2001, 3(24): 5355–5357. doi: 10.1039/b108676f
    [75] TULK C A, BENMORE C J, URQUIDI J, et al. Structural studies of several distinct metastable forms of amorphous ice [J]. Science, 2002, 297(5585): 1320–1323. doi: 10.1126/science.1074178
    [76] NELMES R J, LOVEDAY J S, STRÄSSLE T, et al. Annealed high-density amorphous ice under pressure [J]. Nature Physics, 2006, 2(6): 414–418. doi: 10.1038/nphys313
    [77] GALLO P, AMANN-WINKEL K, ANGELL C A, et al. Water: a tale of two liquids [J]. Chemical Reviews, 2016, 116(13): 7463–7500. doi: 10.1021/acs.chemrev.5b00750
    [78] AMANN-WINKEL K, BÖHMER R, FUJARA F, et al. Colloquium: water’s controversial glass transitions [J]. Reviews of Modern Physics, 2016, 88(1): 011002. doi: 10.1103/RevModPhys.88.011002
    [79] FISHER M, DEVLIN J P. Defect activity in amorphous ice from isotopic exchange data: insight into the glass transition [J]. The Journal of Physical Chemistry, 1995, 99(29): 11584–11590. doi: 10.1021/j100029a041
    [80] SHEPHARD J J, SALZMANN C G. Molecular reorientation dynamics govern the glass transitions of the amorphous ices [J]. The Journal of Physical Chemistry Letters, 2016, 7(12): 2281–2285. doi: 10.1021/acs.jpclett.6b00881
    [81] HABERL B, STROBEL T A, BRADBY J E. Pathways to exotic metastable silicon allotropes [J]. Applied Physics Reviews, 2016, 3(4): 040808. doi: 10.1063/1.4962984
    [82] ZHANG H D, LIU H Y, WEI K Y, et al. BC8 silicon (Si-Ⅲ) is a narrow-gap semiconductor [J]. Physical Review Letters, 2017, 118(14): 146601. doi: 10.1103/PhysRevLett.118.146601
    [83] WONG S, HABERL B, JOHNSON B C, et al. Formation of an r8-dominant Si material [J]. Physical Review Letters, 2019, 122(10): 105701. doi: 10.1103/PhysRevLett.122.105701
    [84] BRAZHKIN V V, LYAPIN A G, POPOVA S V, et al. Nonequilibrium phase transitions and amorphization in Si, Si/GaAs, Ge, and Ge/GaSb at the decompression of high-pressure phases [J]. Physical Review B, 1995, 51(12): 7549–7554. doi: 10.1103/PhysRevB.51.7549
    [85] FENG A, SMET P F. A review of mechanoluminescence in inorganic solids: compounds, mechanisms, models and applications [J]. Materials, 2018, 11(4): 484. doi: 10.3390/ma11040484
    [86] ZHANG J C, WANG X S, MARRIOTT G, et al. Trap-controlled mechanoluminescent materials [J]. Progress in Materials Science, 2019, 103: 678–742. doi: 10.1016/j.pmatsci.2019.02.001
    [87] JHA P, CHANDRA B P. Survey of the literature on mechanoluminescence from 1605 to 2013 [J]. Luminescence, 2014, 29(8): 977–993. doi: 10.1002/bio.2647
    [88] TIWARI G, BRAHME N, SHARMA R, et al. Fracto-mechanoluminescence and thermoluminescence properties of UV and γ-irradiated Ca2Al2SiO7: Ce3+ phosphor [J]. Luminescence, 2016, 31(3): 793–801. doi: 10.1002/bio.3025
    [89] CHANDRA V K, CHANDRA B P, JHA P. Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids [J]. Journal of Luminescence, 2013, 138: 267–280. doi: 10.1016/j.jlumin.2013.01.024
    [90] XIE Y J, LI Z. Triboluminescence: recalling interest and new aspects [J]. Chem, 2018, 4(5): 943–971. doi: 10.1016/j.chempr.2018.01.001
    [91] CHANDRA B P, CHANDRA V K, JHA P. Elastico-mechanoluminescence of thermoluminescent crystals [J]. Defect and Diffusion Forum, 2013, 347: 139–177. doi: 10.4028/www.scientific.net/DDF.347.139
    [92] XU C N, ZHENG X G, AKIYAMA M, et al. Dynamic visualization of stress distribution by mechanoluminescence image [J]. Applied Physics Letters, 2000, 76(2): 179–181. doi: 10.1063/1.125695
    [93] XU C N, WATANABE T, AKIYAMA M, et al. Direct view of stress distribution in solid by mechanoluminescence [J]. Applied Physics Letters, 1999, 74(17): 2414–2416. doi: 10.1063/1.123865
    [94] MOON JEONG S, SONG S, LEE S K, et al. Mechanically driven light-generator with high durability [J]. Applied Physics Letters, 2013, 102(5): 051110. doi: 10.1063/1.4791689
    [95] CHANDRA B P, CHANDRA V K, JHA P. Microscopic theory of elastic-mechanoluminescent smart materials [J]. Applied Physics Letters, 2014, 104(3): 031102. doi: 10.1063/1.4862655
    [96] CHANDRA B P, CHANDRA V K, JHA P. Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials [J]. Physica B: Condensed Matter, 2015, 461: 38–48. doi: 10.1016/j.physb.2014.12.007
    [97] CHANDRA V K, CHANDRA B P, JHA P. Self-recovery of mechanoluminescence in ZnS: Cu and ZnS: Mn phosphors by trapping of drifting charge carriers [J]. Applied Physics Letters, 2013, 103(16): 161113. doi: 10.1063/1.4825360
    [98] ZHAO Y J, PENG D F, BAI G X, et al. Multiresponsive emissions in luminescent ions doped quaternary piezophotonic materials for mechanical-to-optical energy conversion and sensing applications [J]. Advanced Functional Materials, 2021, 31(22): 2010265. doi: 10.1002/adfm.202010265
    [99] SANG J K, ZHOU J Y, ZHANG J C, et al. Multilevel static-dynamic anticounterfeiting based on stimuli-responsive luminescence in a niobate structure [J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20150–20156. doi: 10.1021/acsami.9b03562
    [100] ZHANG J C, GAO N, LI L, et al. Discovering and dissecting mechanically excited luminescence of Mn2+ activators via matrix microstructure evolution [J]. Advanced Functional Materials, 2021, 31(19): 2100221. doi: 10.1002/adfm.202100221
    [101] ZHOU S, CHENG Y, XU J, et al. Design of ratiometric dual-emitting mechanoluminescence: lanthanide/transition-metal combination strategy [J]. Laser & Photonics Reviews, 2022, 16(5): 2100666. doi: 10.1002/lpor.202100666
    [102] ZHANG J C, ZHAO L Z, LONG Y Z, et al. Color manipulation of intense multiluminescence from CaZnOS: Mn2+ by Mn2+ concentration effect [J]. Chemistry of Materials, 2015, 27(21): 7481–7489. doi: 10.1021/acs.chemmater.5b03570
    [103] YANG Y L, YANG X C, YUAN J Y, et al. Time-resolved bright red to cyan color tunable mechanoluminescence from CaZnOS: Bi3+, Mn2+ for anti-counterfeiting device and stress sensor [J]. Advanced Optical Materials, 2021, 9(16): 2100668. doi: 10.1002/adom.202100668
    [104] ZHANG L, LIU Z T, SUN X N, et al. Retainable bandgap narrowing and enhanced photoluminescence in Mn-doped and undoped Cs2NaBiCl6 double perovskites by pressure engineering [J]. Advanced Optical Materials, 2022, 10(2): 2101892. doi: 10.1002/adom.202101892
    [105] CAO Y, QI G Y, SUI L, et al. Pressure-induced emission enhancements of Mn2+-doped cesium lead chloride perovskite nanocrystals [J]. ACS Materials Letters, 2020, 2(4): 381–388. doi: 10.1021/acsmaterialslett.0c00033
  • 加载中
图(6)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  10
  • PDF下载量:  27
出版历程
  • 收稿日期:  2024-03-28
  • 修回日期:  2024-04-16
  • 网络出版日期:  2024-05-25
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回