不同应变率加载下硅的高压相变行为

陈小辉 柳雷 张毅 李守瑞 敬秋民 高俊杰 李俊

陈小辉, 柳雷, 张毅, 李守瑞, 敬秋民, 高俊杰, 李俊. 不同应变率加载下硅的高压相变行为[J]. 高压物理学报, 2024, 38(3): 030102. doi: 10.11858/gywlxb.20240742
引用本文: 陈小辉, 柳雷, 张毅, 李守瑞, 敬秋民, 高俊杰, 李俊. 不同应变率加载下硅的高压相变行为[J]. 高压物理学报, 2024, 38(3): 030102. doi: 10.11858/gywlxb.20240742
CHEN Xiaohui, LIU Lei, ZHANG Yi, LI Shourui, JING Qiumin, GAO Junjie, LI Jun. Strain Rate-Dependent Phase Transition Behavior in Silicon[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030102. doi: 10.11858/gywlxb.20240742
Citation: CHEN Xiaohui, LIU Lei, ZHANG Yi, LI Shourui, JING Qiumin, GAO Junjie, LI Jun. Strain Rate-Dependent Phase Transition Behavior in Silicon[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030102. doi: 10.11858/gywlxb.20240742

不同应变率加载下硅的高压相变行为

doi: 10.11858/gywlxb.20240742
基金项目: 国家自然科学基金(12274381);冲击波物理与爆轰物理全国重点实验室基金(2023JCJQLB05410)
详细信息
    作者简介:

    陈小辉(1987-),男,硕士,副研究员,主要从事高压物理研究. E-mail:chenxh1988@126.com

    通讯作者:

    李 俊(1982-),男,博士,研究员,主要从事高压物理研究. E-mail:lijun102@caep.cn

  • 中图分类号: O521.2; O521.3

Strain Rate-Dependent Phase Transition Behavior in Silicon

  • 摘要: 高压相变是凝聚态物理、地球与行星科学、材料科学等领域关注的核心问题之一,而加载应变率是相变动力学过程的重要影响因素。由于动态加载下物质相结构原位诊断技术的不足以及宽广加载应变率下物质高压相变系统实验研究的缺失,难以开展基于原子尺度物理机制的相变动力学过程建模和数值模拟研究。由于硅的高压相极其丰富,且拥有大量亚稳相,动力学因素在其高压相变过程中发挥着至关重要的作用,因此,硅是研究高压相变动力学的理想材料,对普适相变动力学过程的理论建模具有重要意义。以硅为例,介绍其在准静态、中等应变率和高应变率加载下的相变行为,探讨加载应变率对其高压相变行为的影响。

     

  • 图  硅的高温-高压相图[1316]

    Figure  1.  High temperature and high pressure phase diagram of silicon[1316]

    图  同步辐射时间分辨XRD探测系统[18]

    Figure  2.  Synchrotron radiation-based time-resolved XRD diagnostic system[18]

    图  Si-Ⅱ在不同温度和卸压速率下的相变过程[7]

    Figure  3.  Phase transition process for Si-Ⅱ at different decompression rates and temperatures[7]

    图  时间分辨拉曼光谱探测系统[21]

    Figure  4.  Time-resolved Raman spectroscopy system[21]

    图  单晶硅在不同加压速率下的时间分辨拉曼光谱

    Figure  5.  Time-resolved Raman spectra for single crystal silicon at different compression rates

    图  平板冲击压缩下单晶硅结构响应的时间分辨XRD技术[14]

    Figure  6.  Configuration for the plate impact time-resolved XRD experiments performed on single crystal silicon[14]

    图  轻气炮冲击压缩(19 GPa)下单晶硅的结构响应[14]

    Figure  7.  Structural response of single crystal silicon under shock compression (19 GPa) by light gas gun[14]

    图  激光冲击压缩下单晶硅的结构响应[15]

    Figure  8.  Structural evolution of single crystal silicon under laser shock compression[15]

    图  缺陷主导和相变诱发塑性变形示意图及对应的XRD图像[15]

    Figure  9.  Schematic diagram of the defect-mediated and transition-induced plastic deformation and their XRD signature[15]

  • [1] BRIDGMAN P W. The physics of high pressure [M]. New York: MacMillan, 1931.
    [2] BRIDGMAN P W. The nature of thermodynamics [M]. Cambridge: Harvard University Press, 1941.
    [3] AMADOU N, DE RESSEGUIER T, BRAMBRINK E, et al. Kinetics of the iron α-ε phase transition at high-strain rates: experiment and model [J]. Physical Review B, 2016, 93(21): 214108. doi: 10.1103/PhysRevB.93.214108
    [4] GORMAN M G, COLEMAN A L, BRIGGS R, et al. Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth [J]. Scientific Reports, 2018, 8(1): 16927. doi: 10.1038/s41598-018-35260-3
    [5] SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. doi: 10.1063/1.4839655
    [6] YUAN C S, ZHANG X, ZHOU L J, et al. Phase transitions of carbon tetrachloride under static and dynamic pressures [J]. Journal of Molecular Liquids, 2021, 328: 115444. doi: 10.1016/j.molliq.2021.115444
    [7] LIN C L, LIU X Q, YANG D L, et al. Temperature- and rate-dependent pathways in formation of metastable silicon phases under rapid decompression [J]. Physical Review Letters, 2020, 125(15): 155702. doi: 10.1103/PhysRevLett.125.155702
    [8] LIN C L, LIU X Q, YONG X, et al. Temperature-dependent kinetic pathways featuring distinctive thermal-activation mechanisms in structural evolution of ice Ⅶ [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(27): 15437–15442. doi: 10.1073/pnas.2007959117
    [9] YANG D L, LIU J, LIN C L, et al. Phase transitions in bismuth under rapid compression [J]. Chinese Physics B, 2019, 28(3): 036201. doi: 10.1088/1674-1056/28/3/036201
    [10] HUSBAND R J, O’BANNON E F, LIERMANN H P, et al. Compression-rate dependence of pressure-induced phase transitions in Bi [J]. Scientific Reports, 2021, 11(1): 14859. doi: 10.1038/s41598-021-94260-y
    [11] LIN C L, YONG X, TSE J S, et al. Kinetically controlled two-step amorphization and amorphous-amorphous transition in ice [J]. Physical Review Letters, 2017, 119(13): 135701. doi: 10.1103/PhysRevLett.119.135701
    [12] LIN C L, SMITH J S, SINOGEIKIN S V, et al. A metastable liquid melted from a crystalline solid under decompression [J]. Nature Communications, 2017, 8: 14260. doi: 10.1038/ncomms14260
    [13] LI C, WANG C P, HAN J J, et al. A comprehensive study of the high-pressure-temperature phase diagram of silicon [J]. Journal of Materials Science, 2018, 53(10): 7475–7485. doi: 10.1007/s10853-018-2087-9
    [14] TURNEAURE S J, SINCLAIR N, GUPTA Y M. Real-time examination of atomistic mechanisms during shock-induced structural transformation in silicon [J]. Physical Review Letters, 2016, 117(4): 045502. doi: 10.1103/PhysRevLett.117.045502
    [15] PANDOLFI S, BROWN S B, STUBLEY P G, et al. Atomistic deformation mechanism of silicon under laser-driven shock compression [J]. Nature Communications, 2022, 13: 5535. doi: 10.1038/s41467-022-33220-0
    [16] MCBRIDE E E, KRYGIER A, EHNES A, et al. Phase transition lowering in dynamically compressed silicon [J]. Nature Physics, 2019, 15: 89–94. doi: 10.1038/s41567-018-0290-x
    [17] EVANS W J, YOO C S, LEE G W, et al. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials [J]. Review of Scientific Instruments, 2007, 78(7): 073904. doi: 10.1063/1.2751409
    [18] SMITH J S, SINOGEIKIN S V, LIN C L, et al. Developments in time-resolved high pressure X-ray diffraction using rapid compression and decompression [J]. Review of Scientific Instruments, 2015, 86(7): 072208. doi: 10.1063/1.4926887
    [19] JENEI Z, LIERMANN H P, HUSBAND R, et al. New dynamic diamond anvil cells for tera-pascal per second fast compression X-ray diffraction experiments [J]. Review of Scientific Instruments, 2019, 90(6): 065114. doi: 10.1063/1.5098993
    [20] 苏磊, 杨国强. 动态压力加载/卸载装置dDAC及原位表征技术研究进展 [J]. 高压物理学报, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505

    SU L, YANG G Q. Research progress of dynamic pressure loading/unloading device and in-situ characterization technology [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505
    [21] CHEN X H, ZHANG Y, YE S J, et al. Time-resolved Raman spectroscopy for monitoring the structural evolution of materials during rapid compression [J]. Review of Scientific Instruments, 2023, 94(12): 123901. doi: 10.1063/5.0172530
    [22] FENG L X, ZHANG X Q, LI W H, et al. Multiple structural phase transitions in single crystal silicon subjected to dynamic loading [J]. Scripta Materialia, 2024, 241: 115890. doi: 10.1016/j.scriptamat.2023.115890
  • 加载中
图(9)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  23
  • PDF下载量:  40
出版历程
  • 收稿日期:  2024-03-01
  • 修回日期:  2024-03-30
  • 网络出版日期:  2024-05-09
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回