CuTe2单晶的高温高压合成和物性表征

石利粉 王宁宁 刘子儀 崔琦 张晓晓 刘庆元 隋郁 王铂森 孙建平 程金光

石利粉, 王宁宁, 刘子儀, 崔琦, 张晓晓, 刘庆元, 隋郁, 王铂森, 孙建平, 程金光. CuTe2单晶的高温高压合成和物性表征[J]. 高压物理学报, 2024, 38(2): 020104. doi: 10.11858/gywlxb.20230841
引用本文: 石利粉, 王宁宁, 刘子儀, 崔琦, 张晓晓, 刘庆元, 隋郁, 王铂森, 孙建平, 程金光. CuTe2单晶的高温高压合成和物性表征[J]. 高压物理学报, 2024, 38(2): 020104. doi: 10.11858/gywlxb.20230841
SHI Lifen, WANG Ningning, LIU Ziyi, CUI Qi, ZHANG Xiaoxiao, LIU Qingyuan, SUI Yu, WANG Bosen, SUN Jianping, CHENG Jinguang. High-Temperature and High-Pressure Synthesis and Characterization of CuTe2 Single Crystal[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020104. doi: 10.11858/gywlxb.20230841
Citation: SHI Lifen, WANG Ningning, LIU Ziyi, CUI Qi, ZHANG Xiaoxiao, LIU Qingyuan, SUI Yu, WANG Bosen, SUN Jianping, CHENG Jinguang. High-Temperature and High-Pressure Synthesis and Characterization of CuTe2 Single Crystal[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020104. doi: 10.11858/gywlxb.20230841

CuTe2单晶的高温高压合成和物性表征

doi: 10.11858/gywlxb.20230841
基金项目: 国家自然科学基金(12025408,12174424,11921004,11904391);国家重点研发计划(2021YFA1400200,2022YFA1403900);中国科学院青年创新促进会项目(2023007)
详细信息
    作者简介:

    石利粉(1993-),女,博士,主要从事高压凝聚态物理研究. E-mail:shilf@iphy.ac.cn

    通讯作者:

    孙建平(1989-),男,博士,副研究员,主要从事高压凝聚态物理研究. E-mail:jpsun@iphy.ac.cn

    程金光(1982-),男,博士,研究员,主要从事综合极端条件下的新材料和奇异物理现象研究. E-mail:jgcheng@iphy.ac.cn

  • 中图分类号: O521.2

High-Temperature and High-Pressure Synthesis and Characterization of CuTe2 Single Crystal

  • 摘要: 具有黄铁矿结构的3d过渡金属硫族化合物MX2(M=Mn, Fe, Co, Ni, Cu, Zn;X=S, Se, Te)因呈现丰富的新奇物性而备受关注,其中CuX2是该体系中唯一的超导体,超导转变温度(Tc)分别为1.5 K(CuS2)、2.4 K(CuSe2)和1.3 K(CuTe2)。由于CuX2系列材料只能在高温高压条件下合成,因此,早期关于CuTe2的少数报道均基于多晶样品,到目前为止仍缺乏单晶样品物性的详细报道。采用川井型6/8式二级推进多砧压机,在900 ℃和5 GPa的高温高压条件下合成了高质量的CuTe2单晶样品,并对其进行详细的晶体结构、电输运、磁化率及比热容等物性表征。研究结果表明:CuTe2单晶样品为弱耦合Ⅱ类超导体,Tc约为1.3 K。通过总结对比同体系CuS2、CuSe2以及CuTe2的超导参数,进一步揭示了CuTe2费米面附近的态密度与超导演化的联系。

     

  • 图  (a) CuTe2的单晶照片,(b) CuTe2的晶体结构示意图,(c) CuTe2的粉末XRD精修谱图(插图为单晶XRD谱)

    Figure  1.  (a) Photo of CuTe2 single crystals; (b) crystal structure of CuTe2; (c) refinement of the powder XRD pattern (Inset is single crystal XRD pattern)

    图  CuTe2的电输运表征:(a) 0.4~300.0 K温区的ρ(T)曲线(蓝色实线为CuTe2ρ(T) = ρ0+AT2低温电阻率拟合曲线),(b) 低温超导区域的放大图

    Figure  2.  Characterization of CuTe2 electrical transport: (a) ρ(T) curve in the temperature range of 0.4–300.0 K(The solid line shows the low-temperature resistivity data and the ρ(T)=ρ0+AT2 fitting curve of CuTe2);(b) enlarged view of the superconductivity at low temperatures

    图  CuTe2的磁性表征:(a) 5 Oe外磁场、1.0~1.5 K温区内零场冷和场冷模式下CuTe2的磁化率-温度关系曲线,(b) 在Tc以下不同温度时的磁化曲线,(c) 下临界磁场μ0Hc1与上临界磁场μ0Hc2和温度的关系曲线以及G-L拟合曲线

    Figure  3.  Characterization of CuTe2 magnetic properties: (a) temperature dependence of the magnetic susceptibility of CuTe2 measured in the ZFC and FC modes under an applied magnetic field of μ0H=5 Oe in the temperature range 1.0−1.5 K;(b) isothermal magnetization M(H) curves at different temperatures below Tc; (c) temperature dependences ofthe lower critical field μ0Hc1 and the upper critical field μ0Hc2 of CuTe2 fitted by the G-L formula

    图  CuTe2的比热容表征:(a)不同磁场下的低温C(T)曲线,(b) 零场下的C/T-T2曲线(黑色实线为低温正常态的拟合曲线,插图为归一化的电子比热容-温度关系曲线)

    Figure  4.  Characterization of specific heat of CuTe2: (a) C(T) curves at low-temperature in different magnetic fields;(b) low-temperature specific heat of CuTe2 plotted as C/T vs. T2 at zero field (The inset showsthe temperature dependence of normalized electronic specific heat Ce/T

    表  1  CuX2 (X=S, Se, Te)体系的超导态和正常态参数[2, 47, 1214]

    Table  1.   Superconducting- and normal-state parameters of CuX2 (X=S, Se, Te) system[2, 47, 1214]

    Sample Tc/K μ0Hc1(0)/Oe μ0Hc2(0)/Oe ξGL λGL κGL
    CuS2 1.56 123.2 502.9 809.0 901.0 1.11
    CuSe2 2.43 610.0 375.5
    CuTe2 1.30 83.3 194.9 1300.0 1100.8 0.85
    Sample γ/(mJ·mol−1·K−2) β/(mJ·mol−1·K−4) ΘD/K ΔCe/γTc λep
    CuS2 5.4 0.099 388 1.07 0.47
    CuSe2 7.5 0.335 250 1.31 0.38
    CuTe2 5.8 0.627 210 1.35 0.50
    下载: 导出CSV
  • [1] CHOI H, SEO J Y, UHM Y R, et al. Crystalline structure and magnetic properties of pyrite FeS2 [J]. AIP Advances, 2021, 11(1): 015131. doi: 10.1063/9.0000110
    [2] MUNSON R A, DESORBO W, KOUVEL J S. Electrical, magnetic, and superconducting properties of copper disulfide [J]. The Journal of Chemical Physics, 1967, 47(5): 1769–1770. doi: 10.1063/1.1712162
    [3] BITHER T A, DONOHUE P C, CLOUD W H, et al. Mixed-cation transition metal pyrite dichalcogenides-high pressure synthesis and properties [J]. Journal of Solid State Chemistry, 1970, 1(3/4): 526–533. doi: 10.1016/0022-4596(70)90137-4
    [4] MUNSON R A. The synthesis of copper disulfide [J]. Inorganic Chemistry, 1966, 5(7): 1296–1297. doi: 10.1021/ic50041a055
    [5] BITHER T A, BOUCHARD R J, CLOUD W H, et al. Transition metal pyrite dichalcogenides. High-pressure synthesis and correlation of properties [J]. Inorganic Chemistry, 1968, 7(11): 2208–2220. doi: 10.1021/ic50069a008
    [6] BITHER T A, PREWITT C T, GILLSON J L, et al. New transition metal dichalcogenides formed at high pressure [J]. Solid State Communications, 1966, 4(10): 533–535. doi: 10.1016/0038-1098(66)90419-4
    [7] KAKIHANA M, MATSUDA T D, HIGASHINAKA R, et al. Superconducting and Fermi surface properties of pyrite-type compounds CuS2 and CuSe2 [J]. Journal of the Physical Society of Japan, 2019, 88(1): 014702. doi: 10.7566/JPSJ.88.014702
    [8] GAUTIER F, KRILL G, PANISSOD P, et al. Magnetic properties of CuS2 [J]. Journal of Physics C: Solid State Physics, 1974, 7(8): L170–L173. doi: 10.1088/0022-3719/7/8/005
    [9] VANDERSCHAEVE G, ESCAIG B. Electron microscopy study of transition metals disulfides with pyrite structure [J]. Journal de Physique Colloque, 1976, 37(C4): 105–108. doi: 10.1051/jphyscol:1976416
    [10] UEDA H, NOHARA M, KITAZAWA K, et al. Copper pyrites CuS2 and CuSe2 as anion conductors [J]. Physical Review B, 2002, 65(15): 155104. doi: 10.1103/PhysRevB.65.155104
    [11] YIN Y X, COULTER J, CICCARINO C J, et al. Theoretical investigation of charge density wave instability in CuS2 [J]. Physical Review Materials, 2020, 4(10): 104001. doi: 10.1103/PhysRevMaterials.4.104001
    [12] SHI L F, LIU Z Y, LI J, et al. Pressure-driven superconducting dome in the vicinity of CDW in the pyrite-type superconductor CuS2 [J]. Physical Review Materials, 2022, 6(1): 014802. doi: 10.1103/PhysRevMaterials.6.014802
    [13] TAKANO Y, UCHIYAMA N, OGAWA S, et al. Superconducting properties of CuS2− xSe x under high pressure [J]. Physica C: Superconductivity, 2000, 341: 739−740.
    [14] KONTANI M, TUTUI T, MORIWAKA T, et al. Specific heat and NMR studies on the pyrite-type superconductors CuS2 and CuSe2 [J]. Physica B: Condensed Matter, 2000, 284: 675−676.
    [15] HOU Z F, LI A Y, ZHU Z Z, et al. Ab initio calculations of the electronic structures of copper pyrites CuS2, CuSe2 and CuTe2 [J]. Journal of Material Science and Technology, 2004, 20(4): 429–431.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  4
  • PDF下载量:  17
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-01-17
  • 录用日期:  2024-01-17
  • 网络出版日期:  2024-04-11
  • 刊出日期:  2024-04-05

目录

    /

    返回文章
    返回