错位多次打击下UHPC靶体损伤破坏效应的数值模拟研究

宗香华 王银 孔祥振 姜雅婷 孙留洋 袁俊成 杨涛春

宗香华, 王银, 孔祥振, 姜雅婷, 孙留洋, 袁俊成, 杨涛春. 错位多次打击下UHPC靶体损伤破坏效应的数值模拟研究[J]. 高压物理学报, 2024, 38(3): 034201. doi: 10.11858/gywlxb.20230834
引用本文: 宗香华, 王银, 孔祥振, 姜雅婷, 孙留洋, 袁俊成, 杨涛春. 错位多次打击下UHPC靶体损伤破坏效应的数值模拟研究[J]. 高压物理学报, 2024, 38(3): 034201. doi: 10.11858/gywlxb.20230834
ZONG Xianghua, WANG Yin, KONG Xiangzhen, JIANG Yating, SUN Liuyang, YUAN Juncheng, YANG Taochun. Numerical Investigation on Damage and Failure of UHPC Targets Subjected to Dislocation Multi-Attacks[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 034201. doi: 10.11858/gywlxb.20230834
Citation: ZONG Xianghua, WANG Yin, KONG Xiangzhen, JIANG Yating, SUN Liuyang, YUAN Juncheng, YANG Taochun. Numerical Investigation on Damage and Failure of UHPC Targets Subjected to Dislocation Multi-Attacks[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 034201. doi: 10.11858/gywlxb.20230834

错位多次打击下UHPC靶体损伤破坏效应的数值模拟研究

doi: 10.11858/gywlxb.20230834
基金项目: 国家自然科学基金(52178515);爆炸冲击防灾减灾国家重点实验室基金(FYKY-2022-01-33)
详细信息
    作者简介:

    宗香华(2004-),女,本科,主要从事混凝土类材料静动态力学性能研究. E-mail:15335415064@163.com

    通讯作者:

    王 银(1991-),男,博士,讲师,主要从事固体材料冲击爆炸毁伤机理研究.E-mail:wangyin1107@163.com

  • 中图分类号: O385

Numerical Investigation on Damage and Failure of UHPC Targets Subjected to Dislocation Multi-Attacks

  • 摘要: 基于LS-DYNA三维数值建模方法和修正的Kong-Fang混凝土材料模型,考虑多次打击时弹着点的二维正态分布规律,开展了某弹体错位多次打击下超高性能混凝土靶损伤破坏效应的数值模拟研究。首先对已有弹体先侵彻后爆炸一次打击试验进行了数值模拟,验证了数值建模方法和材料模型参数选取的准确性。在此基础上,开展了10组(圆概率误差(circular error probable,CEP)为3 m时5组,CEP为1 m时5组,每组随机生成3个弹着点)错位多次打击工况的数值计算,探讨了CEP和打击次数对靶体损伤破坏与侵彻深度的影响。数值模拟结果表明:第1枚弹体侵彻后的后续计算过程中,损伤演化均沿第1枚弹体侵彻后的材料损伤区域继续发展,随着打击次数增加,侵彻深度逐渐增加;当多次打击过程的CEP相同时,考虑爆炸工况时计算的侵彻深度比不考虑爆炸工况时大;CEP越小,相对侵彻深度越大,当CEP为1 m时,相对侵彻深度约为1.7,当CEP为3 m时,相对侵彻深度约为1.2。研究结果表明,在多次打击下,现有防护设计规范中遮弹层厚度的设计方法偏危险。

     

  • 图  多次打击过程中的关键问题示意图

    Figure  1.  Schematic diagram of major problems in multi-attacks process

    图  原位多次打击数值预测结果[18]

    Figure  2.  Numerical prediction result of multi-attacks in situ[18]

    图  弹体尺寸[24](单位:mm)

    Figure  3.  Projectile dimension[24] (Unit: mm)

    图  不同CEP下的弹着点分布

    Figure  4.  Distribution of impact points under different CEP

    图  错位多次打击次序示意图

    Figure  5.  Schematic diagram of the dislocation multi-attacks sequence

    图  错位多次打击数值建模

    Figure  6.  Numerical modeling of the dislocation multi-attacks

    图  错位多次打击下的相对侵彻深度

    Figure  7.  Relative penetration depth of dislocation multi-attacks

    表  1  先侵彻后爆炸数值模型与预测结果

    Table  1.   Numerical modeling and prediction results of the penetration followed by explosion

    Simulation Penetration Blast
    Numerical modeling
    Numerical prediction
    下载: 导出CSV

    表  2  UHPC材料模型参数

    Table  2.   UHPC material model parameters

    fc/MPa ρ/(kg·m−3) E/GPa K/GPa G/GPa μ
    137 2 500 55.4 30.8 23.1 0.2
    T/MPa a1 a2 a3 a1y a2y
    6.0 0.585 7 0.025/fc 0.5 0.908 8 0.075/fc
    N b1 b2 b3 λm EOS
    1.0 1.6 1.0 1.0 8.7×10−5 Ref. [2325]
    下载: 导出CSV

    表  3  CEP为3 m时错位多次打击下靶体整体损伤破坏演化过程

    Table  3.   Damage and failure evolution process of the target under dislocation multi-attacks at CEP of 3 m

    Time/ms Case 1 Case 2 Case 3 Case 4 Case 5
    12
    14
    26
    28
    40
    42
    下载: 导出CSV

    表  4  CEP为3 m时错位多次打击下靶体沿弹着点截面的损伤破坏演化过程

    Table  4.   Damage and failure evolution process of the target along the cross section of impact point under dislocation multi-attacks at CEP of 3 m

    Time/ms Case 1 Case 2 Case 3 Case 4 Case 5
    12
    14
    26
    28
    40
    42
    下载: 导出CSV

    表  5  CEP为3 m时错位多次打击过程中弹体变形与偏转

    Table  5.   Projectile deformation and deflection under dislocation multi-attacks at CEP of 3 m

    Time/ms Case 1 Case 2 Case 3 Case 4 Case 5
    12
    26
    40
    下载: 导出CSV
  • [1] 邓国强, 杨秀敏. 钻地弹重复打击效应现场试验研究 [J]. 防护工程, 2012, 34(5): 1–5.

    DENG G Q, YANG X M. Experimental investigation into damage effects of repeated attacks of precision-guided penetration weapons [J]. Protective Engineering, 2012, 34(5): 1–5.
    [2] LIU J, WU C Q, LI J, et al. Projectile impact resistance of fiber-reinforced geopolymer-based ultra-high performance concrete (G-UHPC) [J]. Construction and Building Materials, 2021, 290: 123189. doi: 10.1016/j.conbuildmat.2021.123189
    [3] XU S C, YUAN P C, LIU J, et al. Experimental and numerical investigation of G-UHPC based novel multi-layer protective slabs under contact explosions [J]. Engineering Failure Analysis, 2022, 141: 106830.
    [4] NGOC S H, SIGA S M, THONG M P, et al. Effect of grounded blast furnace slag and rice husk ash on performance of ultra-high-performance concrete (UHPC) subjected to impact loading [J]. Construction and Building Materials, 2022, 329: 127213. doi: 10.1016/j.conbuildmat.2022.127213
    [5] ZHANG F L, ZHONG R. A parametric study on the high-velocity projectile impact resistance of UHPC using the modified K&C model [J]. Journal of Building Engineering, 2022, 46: 103514. doi: 10.1016/j.jobe.2021.103514
    [6] LIU J, LIU C, QU K F, et al. Calibration of Holmquist Johnson Cook (HJC) model for projectile penetration of geopolymer-based ultra-high performance concrete (G-UHPC) [J]. Structures, 2022, 43: 149–163. doi: 10.1016/j.istruc.2022.06.034
    [7] REN L, YU X M, ZHENG M X, et al. Evaluation of typical dynamic damage models used for UHPC based on SHPB technology [J]. Engineering Fracture Mechanics, 2022, 269: 108562. doi: 10.1016/j.engfracmech.2022.108562
    [8] 徐世烺, 李锐, 李庆华, 等. 超高性能水泥基复合材料功能梯度板接触爆炸数值模拟 [J]. 工程力学, 2020, 37(8): 123–133. doi: 10.6052/j.issn.1000-4750.2019.09.0548

    XU S L, LI R, LI Q H, et al. Numerical simulation of functionally graded salbs of ultra-high toughness cementitious composites under contact explosion [J]. Engineering Mechanics, 2020, 37(8): 123–133. doi: 10.6052/j.issn.1000-4750.2019.09.0548
    [9] 钟锐, 张峰领. 超高性能混凝土、纤维增强高强及高延性混凝土抗侵彻性能比较 [J]. 硅酸盐学报, 2021, 49(11): 2423–2434.

    ZHONG R, ZHANG F L. Resistance of ultra-high performance concrete, fiber reinforced high strength concrete and engineered cementitious composite against projectile penetration [J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2423–2434.
    [10] 吕映庆, 陈南勋, 吴海军, 等. 弹体高速侵彻超高性能混凝土靶机理 [J]. 兵工学报, 2022, 43(1): 37–47. doi: 10.3969/j.issn.1000-1093.2022.01.005

    LYU Y Q, CEHN N X, WU H J, et al. Mechanism of high-velocity projectile penetrating into ultra-high performance concrete target [J]. Acta Armamentarii, 2022, 43(1): 37–47. doi: 10.3969/j.issn.1000-1093.2022.01.005
    [11] 左魁, 张继春, 曾宪明, 等. 重复爆炸条件下地冲击效应试验研究 [J]. 岩石力学与工程学报, 2007, 26(Suppl 1): 3378–3383. doi: 10.3321/j.issn:1000-6915.2007.z1.119

    ZUO K, ZHANG J C, ZENG X M, et al. Experimental study on underground shock effects under repeated explosions [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Suppl 1): 3378–3383. doi: 10.3321/j.issn:1000-6915.2007.z1.119
    [12] 左魁, 张继春, 王启睿, 等. 重复爆炸条件下岩石介质破坏效应试验研究 [J]. 岩石力学与工程学报, 2008, 27(1): 2675–2680.

    ZUO K, ZHANG J C, WANG Q R, et al. Experimental research on rock breakage effect under repeat explosions [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 2675–2680.
    [13] LAI J Z, GUO X J, et al. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. doi: 10.1016/j.ijimpeng.2015.05.006
    [14] 杨广栋, 王高辉, 卢文波, 等. 侵彻与爆炸联合作用下混凝土靶体的毁伤效应分析 [J]. 中南大学学报 (自然科学版), 2017, 48(12): 3284–3292.

    YANG G D, WANG G H, LU W B, et al. Damage characteristics of concrete structures under the combined loadings of penetration and explosion [J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3284–3292.
    [15] YANG G D, WANG G H, LU W B, et al. Combined effects of penetration and explosion on damage characteristics of a mass concrete target [J]. Journal of Vibroengineering, 2018, 20(4): 1632–1651. doi: 10.21595/jve.2017.18522
    [16] ANTOUN T H, LOMOV I N, GLENN L A. Simulation of the penetration of a sequence of bombs into granitic rock [J]. International Journal of Impact Engineering, 2003, 29: 81–94. doi: 10.1016/j.ijimpeng.2003.09.006
    [17] 邓国强, 杨秀敏. 工程岩体中多弹重复打击效应的数值模拟分析 [J]. 爆炸与冲击, 2014, 34(3): 361–366. doi: 10.11883/1001-1455(2014)03-0361-06

    DENG G Q, YANG X M. Numerical simulation of the effect of multiply EPW into engineering rock [J]. Explosion and Shock Waves, 2014, 34(3): 361–366. doi: 10.11883/1001-1455(2014)03-0361-06
    [18] GOMEZ J T, SHUKLA A. Multiple impact penetration of semi-infinite concrete [J]. International Journal of Impact Engineering, 2001, 25: 965–979. doi: 10.1016/S0734-743X(01)00029-X
    [19] SUN S Z, LU H, YUE S L, et al. The composite damage effects of explosion after penetration in plain concrete targets [J]. International Journal of Impact Engineering, 2021, 153: 103862. doi: 10.1016/j.ijimpeng.2021.103862
    [20] 王起帆, 孙建虎, 李季, 等. 蜂窝结构抗弹体二次侵彻性能研究 [J]. 地下空间与工程学报, 2020, 16: 640–648.

    WANG Q F, SUN J H, LI J, et al. Anti-penetration performance of honeycomb shelter under two projectile strikes [J]. Chinese Journal of Underground Space and Engineering, 2020, 16: 640–648.
    [21] 吴平, 周飞, 李庆华, 等. 超高韧性水泥基复合材料—纤维混凝土组合靶体抗两次打击试验研究 [J]. 爆炸与冲击, 2022, 42(3): 033301. doi: 10.11883/bzycj-2021-0178

    WU P, ZHOU F, LI Q H, et al. Experimental study on the resistance of the ultra high toughness cementitious composites material—fiber concrete composite targets subjected to twice projectiles impact [J]. Explosion and Shock Waves, 2022, 42(3): 033301. doi: 10.11883/bzycj-2021-0178
    [22] 赖建中, 朱耀勇, 徐升, 等. 超高性能水泥基符合材料抗多次侵彻性能研究 [J]. 爆炸与冲击, 2013, 33(6): 601–607. doi: 10.3969/j.issn.1001-1455.2013.06.007

    LAI J Z, ZHU Y Y, XU S. Resistance of ultra-high-performance cementitious composites to multiple impact penetration [J]. Explosion and Shock Waves, 2013, 33(6): 601–607. doi: 10.3969/j.issn.1001-1455.2013.06.007
    [23] WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. doi: 10.1016/j.ijimpeng.2021.103815
    [24] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132

    WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132
    [25] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. doi: 10.1016/j.ijimpeng.2018.05.006
    [26] ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. doi: 10.1016/j.ijimpeng.2020.103633
    [27] MAY P I, FORMATN K. LS-DYNA® keyword user’s manual: version 971 [M]. Livermore, USA: Livermore Software Technology Corporation, 2007.
    [28] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9): 847–873.
    [29] XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81.
    [30] 徐浩. 混凝土动态计算本构新模型 [D]. 合肥: 中国科学技术大学, 2013.

    XU H. A new computational constitutive model for concrete subjected to dynamic loadings [D]. Hefei: University of Science and Technology of China, 2013.
    [31] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020.

    XIN C L, XUE Z Q, TU J, et al. Material parameters manual for finite element analysis [M]. Beijing: China Machine Press, 2020.
    [32] RABCZUK T, BELYTSCHKO T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29/30): 2777–2799.
    [33] 张乐, 李武周, 巨养锋, 等. 基于圆概率误差的定位精度评估办法 [J]. 指挥控制与仿真, 2013, 35(1): 111–114. doi: 10.3969/j.issn.1673-3819.2013.01.025

    ZHANG L, LI W Z, JU Y F, et al. Positioning accuracy evaluation method based on CEP [J]. Command Control & Simulation, 2013, 35(1): 111–114. doi: 10.3969/j.issn.1673-3819.2013.01.025
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  14
  • PDF下载量:  22
出版历程
  • 收稿日期:  2023-12-25
  • 修回日期:  2024-01-20
  • 录用日期:  2024-03-01
  • 网络出版日期:  2024-05-27
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回