热腐蚀和热冲击下炭化釜Q245R钢本构关系的研究

刘志远 陈文飞 谢作然 蒋昊成 李进 朱珏

刘志远, 陈文飞, 谢作然, 蒋昊成, 李进, 朱珏. 热腐蚀和热冲击下炭化釜Q245R钢本构关系的研究[J]. 高压物理学报. doi: 10.11858/gywlxb.20230813
引用本文: 刘志远, 陈文飞, 谢作然, 蒋昊成, 李进, 朱珏. 热腐蚀和热冲击下炭化釜Q245R钢本构关系的研究[J]. 高压物理学报. doi: 10.11858/gywlxb.20230813
LIU Zhiyuan, CHEN Wenfei, XIE Zuoran, JIANG Haocheng, LI Jin, ZHU Jue. Constitutive Relationship of Q245R Steel of Carbonization Kettle under Thermal Corrosion and Thermal Shocking[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20230813
Citation: LIU Zhiyuan, CHEN Wenfei, XIE Zuoran, JIANG Haocheng, LI Jin, ZHU Jue. Constitutive Relationship of Q245R Steel of Carbonization Kettle under Thermal Corrosion and Thermal Shocking[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20230813

热腐蚀和热冲击下炭化釜Q245R钢本构关系的研究

doi: 10.11858/gywlxb.20230813
基金项目: 国家自然科学基金(11972203,11572162);宁波市自然科学基金(202003N4152)
详细信息
    作者简介:

    刘志远(1997-),男,硕士研究生,主要从事金属腐蚀性能研究. E-mail:1956039335@qq.com

    通讯作者:

    朱 珏(1979-),女,博士,教授,主要从事金属腐蚀性能研究. E-mail:zhujue@nbu.edu.cn

  • 中图分类号: O347; TG142

Constitutive Relationship of Q245R Steel of Carbonization Kettle under Thermal Corrosion and Thermal Shocking

  • 摘要: 采取电化学加速腐蚀试验对Q245R钢试样进行处理,以模拟炭化釜的实际腐蚀工况,通过电化学腐蚀拉伸试验,发现腐蚀不仅改变试样的几何尺寸,而且导致材料力学性能退化。对Q245R钢材料进行不同温度、腐蚀率、应变率(10−3~1 s−1低应变率、10~102 s−1中应变率、103 s−1高应变率)的拉伸试验,并运用MATLAB在Johnson-Cook本构方程的基础上进行拟合,增加特征强度与热处理温度、腐蚀率的关系,从而确定了材料的本构关系。结果显示,本构曲线与真实拉伸试验数据吻合较好,拟合效果良好。

     

  • 图  电化学腐蚀示意图

    Figure  1.  Schematic diagram of electrochemical corrosion

    图  未腐蚀和腐蚀试样的真实应力-应变曲线

    Figure  2.  True stress-strain curves of uncorroded and corroded specimens

    图  特征强度及断裂应变与腐蚀率的关系

    Figure  3.  Characteristic strength and fracture strain as a function of corrosion rate

    图  低应变率不同处理温度下未腐蚀试样的应力-应变曲线

    Figure  4.  Stress-strain curves of uncorroded specimens at different treatment temperatures and low strain rates

    图  低应变率不同处理温度下腐蚀试样的应力-应变曲线

    Figure  5.  Stress-strain curves of corroded specimens at different treatment temperatures and low strain rates

    图  屈服强度随应变率的变化

    Figure  6.  Variation of yield strength with strain rate

    图  抗拉强度随应变率的变化

    Figure  7.  Variation of tensile strength with strain rate

    图  中应变率不同温度下未腐蚀试样的应力-应变曲线

    Figure  8.  Stress-strain curves of uncorroded specimens at different treatment temperatures and medium strain rates

    图  中应变率不同温度下腐蚀试样的应力-应变曲线

    Figure  9.  Stress-strain curves of corroded specimens at different treatment temperatures and medium strain rates

    图  10  高温一体控制Hopkinson拉杆装置

    Figure  10.  High temperature integrated control Hopkinson tensile bar device

    图  11  不同温度和腐蚀工况下试样的应力-应变曲线

    Figure  11.  Stress-strain curves of specimens at different treatment temperatures and corrosion conditions

    图  12  高温高应变率下未腐蚀试样的应力-应变曲线

    Figure  12.  Stress-strain curves of uncorroded specimen at high temperature and high strain rate

    图  13  25 ℃下应力-应变曲线拟合的对比

    Figure  13.  Comparison of stress-strain curves fitting at 25 °C

    图  14  屈服强度-无量纲温度曲线

    Figure  14.  Yield strength-dimensionless temperature curve

    表  1  未腐蚀和腐蚀试样的特征强度

    Table  1.   Characteristic strength of uncorroded and corroded specimens

    Specimen $ \dot{\varepsilon } /{\mathrm{s}}$−1 Characteristic strength/MPa Specimen $ \dot{\varepsilon }/{\mathrm{s}} $−1 Characteristic strength/MPa
    25 ℃ 400 ℃ 500 ℃ 25 ℃ 400 ℃ 500 ℃
    Uncorroded 10−3 588.9 611.4 576.0 Corroded 10−3 497.6 594.7 476.4
    10−2 612.6 630.1 593.3 10−2 507.4 524.9 490.5
    10−1 623.9 645.9 615.5 10−1 533.6 564.8 530.4
    1 665.2 690.1 638.6 1 578.4 614.9 570.9
    10 716.5 742.9 662.0 10 682.8 712.9 625.8
    102 861.7 898.9 837.3 102 792.8 829.7 762.8
    103 980.1 1025.7 963.8 103 826.5 867.4 775.9
    下载: 导出CSV
  • [1] 能源生产和消费革命战略2016—2030 [J]. 电器工业, 2017(5): 39–47.

    Energy production and consumption revolution strategy 2016–2030 [J]. China Electrical Equipment Industry, 2017(5): 39–47.
    [2] 闫景凤. 生物质锅炉应用现状分析 [J]. 农机使用与维修, 2023(1): 56–58. doi: 10.14031/j.cnki.njwx.2023.01.015

    YAN J F. Application status of biomass boiler [J]. Agricultural Machinery Using & Maintenance, 2023(1): 56–58. doi: 10.14031/j.cnki.njwx.2023.01.015
    [3] PRONOBIS M, WEJKOWSKI R, KALISZ S, et al. Conversion of a pulverized coal boiler into a torrefied biomass boiler [J]. Energy, 2023, 262: 125442. doi: 10.1016/j.energy.2022.125442
    [4] 孙广见. 生物质能产业遇瓶颈专家呼吁加强基础研究 [J]. 能源研究与利用, 2019(6): 11. doi: 10.3969/j.issn.1001-5523.2019.06.006

    SUN G J. Biomass energy industry encounters bottlenecks, experts call for strengthening basic research [J]. Energy Research & Utilization, 2019(6): 11. doi: 10.3969/j.issn.1001-5523.2019.06.006
    [5] 姜春光, 李定青, 王鹏, 等. 生物质CFB锅炉受热面沉积结构和空间分布特性研究 [J]. 山东电力技术, 2023, 50(3): 63–68. doi: 10.3969/j.issn.1007-9904.2023.03.011

    JIANG C G, LI D Q, WANG P, et al. Study on deposition structure and spatial distribution characteristics on heating surface of biomass-fired CFB boiler [J]. Shandong Electric Power, 2023, 50(3): 63–68. doi: 10.3969/j.issn.1007-9904.2023.03.011
    [6] WU W Y, WEI B, LI G H, et al. Study on ammonia gas high temperature corrosion coupled erosion wear characteristics of circulating fluidized bed boiler [J]. Engineering Failure Analysis, 2022, 132: 105896. doi: 10.1016/j.engfailanal.2021.105896
    [7] 胡曼, 倪文啸, 薛俊峰, 等. 20G钢锅炉烟道管开裂原因 [J]. 理化检验: 物理分册, 2022, 58(9): 35–38. doi: 10.11973/lhjy-wl202209009

    HU M, NI W X, XUE J F, et al. Cracking reasons of 20G steel boiler flue pipe [J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2022, 58(9): 35–38. doi: 10.11973/lhjy-wl202209009
    [8] 邵青, 王宇翔, 李林聪. 电力锅炉四管材料发展及失效研究进展 [J]. 电站系统工程, 2023, 39(2): 85–88.

    SHAO Q, WANG Y X, LI L C. Research progress on development and failure of four-tube materials for utility boilers [J]. Power System Engineering, 2023, 39(2): 85–88.
    [9] 崔轩伟, 都兴红, 白岩, 等. 垃圾焚烧炉关键部件高温腐蚀研究现状 [J]. 辽宁化工, 2021, 50(12): 1846–1849. doi: 10.3969/j.issn.1004-0935.2021.12.025

    CUI X W, DU X H, BAI Y, et al. Research status of high temperature corrosion of key components of waste incinerator [J]. Liaoning Chemical Industry, 2021, 50(12): 1846–1849. doi: 10.3969/j.issn.1004-0935.2021.12.025
    [10] XU L G, HUANG Y J, WANG J, et al. Experimental investigation of high-temperature corrosion properties in simulated reducing-sulphidizing atmospheres of the waterwall fireside in the boiler [J]. The Canadian Journal of Chemical Engineering, 2020, 98(4): 905–918. doi: 10.1002/cjce.23677
    [11] 张炜, 何建军. 垃圾焚烧炉热管用12Cr1MoVG钢在不同碱金属混合熔盐中的热腐蚀行为 [J]. 机械工程材料, 2019, 43(2): 13–17, 22. doi: 10.11973/jxgccl201902003

    ZHANG W, HE J J. Thermal corrosion behavior in mixed molten salt of different alkali metals of 12Cr1MoVG steel for heat pipe in waste incinerator [J]. Materials for Mechanical Engineering, 2019, 43(2): 13–17, 22. doi: 10.11973/jxgccl201902003
    [12] 于文静, 史健勇, 赵金城. Q345钢材动态力学性能研究 [J]. 建筑结构, 2011, 41(3): 28–30, 63. doi: 10.19701/j.jzjg.2011.03.007

    YU W J, SHI J Y, ZHAO J C. Research of dynamic mechanical behavior of Q345 steel [J]. Building Structure, 2011, 41(3): 28–30, 63. doi: 10.19701/j.jzjg.2011.03.007
    [13] 林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定 [J]. 振动与冲击, 2014, 33(9): 153–158, 172. doi: 10.13465/j.cnki.jvs.2014.09.028

    LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158, 172. doi: 10.13465/j.cnki.jvs.2014.09.028
    [14] 刘禹昕, 朱涛, 肖守讷, 等. 轨道车辆SUS304不锈钢材料动态力学性能与本构模型修正 [J]. 机械强度, 2022, 44(1): 74–80. doi: 10.16579/j.issn.1001.9669.2022.01.010

    LIU Y X, ZHU T, XIAO S N, et al. Dynamic mechanical properties and constitutive model modification of SUS304 stainless steel used in carbodies of trains [J]. Journal of Mechanical Strength, 2022, 44(1): 74–80. doi: 10.16579/j.issn.1001.9669.2022.01.010
    [15] 贾紫月, 杨飏, 马厚标. 均匀腐蚀海工结构钢拉伸试验研究 [J]. 中国海洋大学学报, 2019, 49(Suppl 1): 135–142. doi: 10.16441/j.cnki.hdxb.20170176

    JIA Z Y, YANG Y, MA H B. Experimental study on the tensile properties of uniform corroded marine structure steel [J]. Periodical of Ocean University of China, 2019, 49(Suppl 1): 135–142. doi: 10.16441/j.cnki.hdxb.20170176
    [16] WANG J J, GUO W G, GAO X S, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates [J]. International Journal of Plasticity, 2015, 65: 85–107. doi: 10.1016/j.ijplas.2014.08.017
    [17] LIU P J, QUAN Y M, DING G. Dynamic mechanical characteristics and constitutive modeling of rail steel over a wide range of temperatures and strain rates [J]. Advances in Materials Science and Engineering, 2019: 6862391. doi: 10.1155/2019/6862391
    [18] 王金萍. 冷轧低碳马氏体钢不同速率和温度拉伸的性能与断裂机制 [D]. 秦皇岛: 燕山大学, 2019.

    WANG J P. Tensile properties and fracture mechanism of cold rolled low carbon martensite steel at different strain rates and temperatures [D]. Qinhuangdao: Yanshan University, 2019.
    [19] 梁明华, 魏娜, 李亮, 等. 拉伸速率对X80M管线钢拉伸性能的影响 [J]. 石油管材与仪器, 2015, 1(6): 40–43. doi: 10.19459/j.cnki.61-1500/te.2015.06.010

    LIANG M H, WEI N, LI L, et al. Influence of test rate on tensile property of X80M pipeline steel [J]. Petroleum Tubular Goods & Instruments, 2015, 1(6): 40–43. doi: 10.19459/j.cnki.61-1500/te.2015.06.010
    [20] HORMOZI R, BIGLARI F, NIKBIN K. Experimental and numerical creep-fatigue study of type 316 stainless steel failure under high temperature LCF loading condition with different hold time [J]. Engineering Fracture Mechanics, 2015, 141: 19–43. doi: 10.1016/j.engfracmech.2015.05.007
    [21] 郭子涛, 舒开鸥, 高斌, 等. 基于J-C模型的Q235钢的失效准则 [J]. 爆炸与冲击, 2018, 38(6): 1325–1332. doi: 10.11883/bzycj-2017-0163

    GUO Z T, SHU K O, GAO B, et al. J-C model based failure criterion and verification of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(6): 1325–1332. doi: 10.11883/bzycj-2017-0163
    [22] 林莉, 黄博, 肖新科, 等. Q355B钢动态材料性能研究 [J]. 振动与冲击, 2020, 39(18): 231–237. doi: 10.13465/j.cnki.jvs.2020.18.031

    LIN L, HUANG B, XIAO X K, et al. Behavior of dynamic material Q355B steel based on the Johnson-Cook model [J]. Journal of Vibration and Shock, 2020, 39(18): 231–237. doi: 10.13465/j.cnki.jvs.2020.18.031
    [23] 董泽民, 陈伟, 刘璐璐, 等. 基于J-C模型的GH907高温合金动态本构关系及失效关系 [J]. 机械工程材料, 2021, 45(10): 43–49. doi: 10.11973/jxgccl202110006

    DONG Z M, CHEN W, LIU L L, et al. Dynamic constitutive relationship and failure relationship of GH907 superalloy based on J-C model [J]. Materials for Mechanical Engineering, 2021, 45(10): 43–49. doi: 10.11973/jxgccl202110006
    [24] JING B, QIAN Z, ZAREIPOUR H, et al. Wind turbine power curve modelling with logistic functions based on quantile regression [J]. Applied Sciences, 2021, 11(7): 3048. doi: 10.3390/app11073048
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  4
  • PDF下载量:  2
出版历程
  • 收稿日期:  2023-12-14
  • 修回日期:  2024-01-12
  • 网络出版日期:  2024-04-07

目录

    /

    返回文章
    返回