刚性和柔性多孔材料作用下氢气爆轰胞格结构的演化规律

罗荣钦 彭澳 张静雯 王珺 陈先锋 申利远 师吉浩 孙绪绪

罗荣钦, 彭澳, 张静雯, 王珺, 陈先锋, 申利远, 师吉浩, 孙绪绪. 刚性和柔性多孔材料作用下氢气爆轰胞格结构的演化规律[J]. 高压物理学报, 2024, 38(3): 035202. doi: 10.11858/gywlxb.20230776
引用本文: 罗荣钦, 彭澳, 张静雯, 王珺, 陈先锋, 申利远, 师吉浩, 孙绪绪. 刚性和柔性多孔材料作用下氢气爆轰胞格结构的演化规律[J]. 高压物理学报, 2024, 38(3): 035202. doi: 10.11858/gywlxb.20230776
LUO Rongqin, PENG Ao, ZHANG Jingwen, WANG Jun, CHEN Xianfeng, SHEN Liyuan, SHI Jihao, SUN Xuxu. Evolution Law of Hydrogen Detonation Cellular Structure under the Effect of Rigid and Flexible Porous Materials[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 035202. doi: 10.11858/gywlxb.20230776
Citation: LUO Rongqin, PENG Ao, ZHANG Jingwen, WANG Jun, CHEN Xianfeng, SHEN Liyuan, SHI Jihao, SUN Xuxu. Evolution Law of Hydrogen Detonation Cellular Structure under the Effect of Rigid and Flexible Porous Materials[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 035202. doi: 10.11858/gywlxb.20230776

刚性和柔性多孔材料作用下氢气爆轰胞格结构的演化规律

doi: 10.11858/gywlxb.20230776
基金项目: 湖北省重点研发“揭榜挂帅”科技项目(2022BEC024);广东省自然科学基金(2023A1515012080);国家自然科学基金(12302443);国家重点研发计划(2021YFB4000901);火灾与爆炸安全防护重庆市重点实验室开放基金(LQ22KFJJ06);中央高校基础研究项目(223161001);中国民航大学民航热灾害防控应急重点实验室开放基金(RZH2021-KF-05);中国科学技术大学火灾科学国家重点实验室开放基金(HZ2022-KF09)
详细信息
    作者简介:

    罗荣钦(2003-),男,本科,主要从事气相爆轰传播动力学研究. E-mail:1633909116@qq.com

    通讯作者:

    王 珺(1983-),女,讲师,主要从事风险评估与应急管理研究. E-mail:9805@whut.edu.cn

    孙绪绪(1994-),男,博士,教授,主要从事气相爆轰传播动力学及氢能燃爆安全技术研究. E-mail:xuxusun@whut.edu.cn

  • 中图分类号: O381

Evolution Law of Hydrogen Detonation Cellular Structure under the Effect of Rigid and Flexible Porous Materials

  • 摘要: 多孔材料作为高效吸波耗能介质,广泛应用于爆轰衰减研究中。为进一步揭示多孔材料的抑爆机理,系统研究了柔性(海绵)和刚性(金属丝网)2种典型多孔材料对氢氧爆轰胞格结构的影响,以及海绵和金属丝网厚度、孔隙率对爆轰胞格结构、尺寸等参数的影响。采用烟熏板技术记录爆轰波的胞格图案,并计算得到爆轰胞格尺寸;采用压力传感器记录爆轰波到达时间,进而计算得到爆轰波的平均传播速度。结果表明,爆轰胞格结构与海绵和金属丝网的厚度、孔隙率密切相关,此外研究发现了多个爆轰传播阶段,包括爆轰失效、加速和再起爆。爆轰胞格尺寸也与海绵和金属丝网的厚度、孔隙率密切相关,增大多孔材料厚度和减小孔隙率均能显著增大爆轰胞格尺寸。通过对比分析海绵与金属丝网对爆轰胞格尺寸的影响发现,在相同条件下,刚性多孔材料对爆轰的抑制作用更强,但这种差距会随着多孔材料厚度的增加而减小。最后,通过引入无量纲参数DH/λ量化分析爆轰传播极限。对于柔性和刚性多孔材料而言,其爆轰传播极限可分别近似量化为DH/λ≈3.0和DH/λ≈3.1。

     

  • 图  实验装置示意图

    Figure  1.  Schematic diagram of the experimental arrangements

    图  金属网和海绵

    Figure  2.  Wire mesh and sponge

    图  不同初始压力下光滑管道内的爆轰胞格结构(单位:mm)

    Figure  3.  Structures of detonation cell in smooth tube under different initial pressure (Unit: mm)

    图  光滑管道内爆轰胞格尺寸与初始压力的关系

    Figure  4.  Relationships between detonation cell size and initial pressure in smooth tube

    图  p0=20 kPa时不同海绵厚度及PPI孔隙率下的爆轰胞格结构(单位:mm)

    Figure  5.  Detonation cellular structures for different thickness of sponge and PPI porosity at p0=20 kPa (Unit: mm)

    图  p0=20 kPa时海绵厚度对爆轰胞格尺寸的影响

    Figure  6.  Effect of sponge thickness on detonation cell size at p0=20 kPa

    图  p0=20 kPa时海绵孔隙率对爆轰胞格尺寸的影响

    Figure  7.  Effect of sponge porosity on detonation cell size at p0=20 kPa

    图  p0=20 kPa、hs=30 mm时不同孔隙率下的爆轰胞格结构(单位:mm)

    Figure  8.  Structures of the detonation cell under different sponge porosity conditions at p0=20 kPa and hs=30 mm (Unit: mm)

    图  海绵厚度为30 mm时爆轰波的平均传播速度与氢气摩尔分数的关系

    Figure  9.  Relationships between the average velocity of detonation wave and hydrogen mole fraction at 30 mm sponge thickness

    图  10  p0=20 kPa、nw=20PPI时不同金属网厚度下的爆轰胞格结构(单位:mm)

    Figure  10.  Structures of the detonation cell under different wire mesh thickness conditions at p0=20 kPa and nw=20PPI (Unit: mm)

    图  11  nw=20PPI时金属网厚度对爆轰胞格尺寸的影响

    Figure  11.  Effect of wire mesh thickness on detonation cell size at nw=20PPI

    图  12  p0=20 kPa、hw=10 mm时不同孔隙率下的爆轰胞格结构(单位:mm)

    Figure  12.  Structures of the detonation cell under different wire mesh porosity conditions at p0=20 kPa and hw=10 mm (Unit: mm)

    图  13  p0=20 kPa、hw=10 mm时金属网孔隙率对爆轰胞格尺寸的影响

    Figure  13.  Effect of wire mesh porosity on detonationcell size at p0=20 kPa and hw=10 mm

    图  14  p0=20 kPa时金属网和海绵厚度对爆轰胞格尺寸的影响

    Figure  14.  Effect of metal mesh and sponge thickness on detonation cell size at p0=20 kPa

    表  1  多孔材料的阻塞比

    Table  1.   Blockage ratio of porous material

    No.Thickness of porous materials/mmInternal diameter of pipe/mmBlockage ratio
    110600.167
    220600.333
    330600.500
    下载: 导出CSV
  • [1] DINCER I, ACAR C. Review and evaluation of hydrogen production methods for better sustainability [J]. International Journal of Hydrogen Energy, 2015, 40(34): 11094–11111. doi: 10.1016/j.ijhydene.2014.12.035
    [2] VERHELST S, WALLNER T. Hydrogen-fueled internal combustion engines [J]. Progress in Energy and Combustion Science, 2009, 35(6): 490–527. doi: 10.1016/j.pecs.2009.08.001
    [3] ZHENG L G, DOU Z G, DU D P, et al. Study on explosion characteristics of premixed hydrogen/biogas/air mixture in a duct [J]. International Journal of Hydrogen Energy, 2019, 44(49): 27159–27173. doi: 10.1016/j.ijhydene.2019.08.156
    [4] MOLNARNE M, SCHROEDER V. Hazardous properties of hydrogen and hydrogen containing fuel gases [J]. Process Safety and Environmental Protection, 2019, 130: 1–5. doi: 10.1016/j.psep.2019.07.012
    [5] WU X L, XU S, PANG A M, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M= Mg, Ti, Zr) of energetic materials [J]. Defence Technology, 2021, 17(4): 1262–1268. doi: 10.1016/j.dt.2020.06.011
    [6] ALVES J J N, NETO A T P, ARAÚJO A C B, et al. Overview and experimental verification of models to classify hazardous areas [J]. Process Safety and Environmental Protection, 2019, 122: 102–117. doi: 10.1016/j.psep.2018.11.021
    [7] JIAO F Y, ZHANG H R, LI W J, et al. Experimental and numerical study of the influence of initial temperature on explosion limits and explosion process of syngas-air mixtures [J]. International Journal of Hydrogen Energy, 2022, 47(52): 22261–22272. doi: 10.1016/j.ijhydene.2022.05.017
    [8] CHEN Y R, CHANG J, BUSSONNIÈRE A, et al. Evaluation of wettability of mineral particles via cavitation thresholds [J]. Powder Technology, 2020, 362: 334–340. doi: 10.1016/j.powtec.2019.11.069
    [9] ROYLE M, WILLOUGHBY D. The safety of the future hydrogen economy [J]. Process Safety and Environmental Protection, 2011, 89(6): 452–462. doi: 10.1016/j.psep.2011.09.003
    [10] HALIM S Z, YU M X, ESCOBAR H, et al. Towards a causal model from pipeline incident data analysis [J]. Process Safety and Environmental Protection, 2020, 143: 348–360. doi: 10.1016/j.psep.2020.06.047
    [11] AIZAWA K, YOSHINO S, MOGI T, et al. Study of detonation initiation in hydrogen/air flow [J]. Shock Waves, 2008, 18(4): 299–305. doi: 10.1007/s00193-008-0166-6
    [12] EVANS M W, GIVEN F I, RICHESON W E JR. Effects of attenuating materials on detonation induction distances in gases [J]. Journal of Applied Physics, 1955, 26(9): 1111–1113. doi: 10.1063/1.1722162
    [13] TEODORCZYK A, LEE J H S. Detonation attenuation by foams and wire meshes lining the walls [J]. Shock Waves, 1995, 4(4): 225–236. doi: 10.1007/BF01414988
    [14] 周凯元, 李宗芬. 丙烷-空气爆燃波的火焰面在直管道中的加速运动 [J]. 爆炸与冲击, 2000, 20(2): 137–142. doi: 10.3321/j.issn:1001-1455.2000.02.008

    ZHOU K Y, LI Z F. Flame front acceleration of propane-air deflagration in straight tubes [J]. Explosion and Shock Waves, 2000, 20(2): 137–142. doi: 10.3321/j.issn:1001-1455.2000.02.008
    [15] 年伟民, 周凯元, 王汉良, 等. 气体爆轰波在声学吸收壁下游的再加强过程 [J]. 实验力学, 2005, 20(1): 37–43. doi: 10.3969/j.issn.1001-4888.2005.01.006

    NIAN W M, ZHOU K Y, WANG H L, et al. The re-intension process of gaseous detonation downstream of the acoustic absorbing walled section [J]. Journal of Experimental Mechanics, 2005, 20(1): 37–43. doi: 10.3969/j.issn.1001-4888.2005.01.006
    [16] 夏昌敬, 周凯元. 气相爆轰波在90°矩形弯管中传播时胞格结构的演化 [J]. 爆炸与冲击, 2005, 25(2): 151–156. doi: 10.11883/1001-1455(2005)02-0151-06

    XIA C J, ZHOU K Y. Cellular structure evolution of gaseous detonation in a 90° rectangular bend [J]. Explosion and Shock Waves, 2005, 25(2): 151–156. doi: 10.11883/1001-1455(2005)02-0151-06
    [17] 王汉良, 周凯元, 杨志, 等. 气体爆轰波在管道中绕射和反射的实验研究 [J]. 火灾科学, 2005, 14(3): 177–181.

    WANG H L, ZHOU K Y, YANG Z, et al. Experimental study of diffraction and reflection of gaseous detonation wave in the tube [J]. Fire Safety Science, 2005, 14(3): 177–181.
    [18] 杨志, 周凯元, 谢立军, 等. Z型管道中气体火焰传播规律的实验研究 [J]. 火灾科学, 2006, 15(3): 111–115. doi: 10.3969/j.issn.1004-5309.2006.03.001

    YANG Z, ZHOU K Y, XIE L J, et al. Experimental study of flame transition in the “Z” type tube [J]. Fire Safety Science, 2006, 15(3): 111–115. doi: 10.3969/j.issn.1004-5309.2006.03.001
    [19] GUO C, THOMAS G, LI J, et al. Experimental study of gaseous detonation propagation over acoustically absorbing walls [J]. Shock Waves, 2002, 11(5): 353–359. doi: 10.1007/s001930100113
    [20] BIVOL G Y, GOLOVASTOV S V, GOLUB V V. Attenuation and recovery of detonation wave after passing through acoustically absorbing section in hydrogen-air mixture at atmospheric pressure [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 311–314. doi: 10.1016/j.jlp.2016.05.032
    [21] ZHANG B. The influence of wall roughness on detonation limits in hydrogen-oxygen mixture [J]. Combustion and Flame, 2016, 169: 333–339. doi: 10.1016/j.combustflame.2016.05.003
    [22] BIVOL G Y, GOLOVASTOV S V, GOLUB V V. Effects of the pore size on hydrogen-air detonation propagation in the channel with porous walls [J]. Journal of Physics: Conference Series, 2019, 1147: 012046. doi: 10.1088/1742-6596/1147/1/012046
    [23] MALIK K, ŻBIKOWSKI M, TEODORCZYK A. Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen [J]. Nuclear Engineering and Technology, 2019, 51(2): 424–431. doi: 10.1016/j.net.2018.11.004
    [24] SUN X X, LU S X. Effect of orifice plate on the transmission mechanism of a detonation wave in hydrogen-oxygen mixtures [J]. International Journal of Hydrogen Energy, 2020, 45(22): 12593–12603. doi: 10.1016/j.ijhydene.2020.02.162
    [25] KANESHIGE M, SHEPHERD J E. Detonation database: technical report FM97-8, GALCIT [EB/OL]. (1999-09-03)[2023-03-01]. https://shepherd.caltech.edu/EDL/publications/m_kane97b/db.pdf.
    [26] LIU S Z, CHEN X, ZHAO N B, et al. Experimental study on initiation and propagation behavior of propane/oxygen/nitrogen detonation wave [J]. Fuel, 2021, 293: 120487. doi: 10.1016/j.fuel.2021.120487
    [27] ZHANG B. Detonation limits in methane-hydrogen-oxygen mixtures: dominant effect of induction length [J]. International Journal of Hydrogen Energy, 2019, 44(41): 23532–23537. doi: 10.1016/j.ijhydene.2019.07.053
    [28] PERALDI O, KNYSTAUTAS R, LEE J H. Criteria for transition to detonation in tubes [J]. Symposium (International) on Combustion, 1988, 21(1): 1629–1637. doi: 10.1016/S0082-0784(88)80396-5
    [29] CROSS M, CICCARELLI G. DDT and detonation propagation limits in an obstacle filled tube [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 380–386. doi: 10.1016/j.jlp.2014.11.020
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  13
  • PDF下载量:  18
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2023-11-22
  • 录用日期:  2024-01-17
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回