Prediction of Superconducting RbBSi  Compounds under Pressure

LIU Jinyu CUI Xiangyue LIU Ailing CHENG Xiaoran WANG Xingyu WANG Yujia ZHANG Miao

刘金禹, 崔湘粤, 刘爱玲, 程潇冉, 王星宇, 王雨佳, 张淼. 压力下超导RbBSi化合物的预测[J]. 高压物理学报, 2024, 38(2): 020107. doi: 10.11858/gywlxb.20230765
引用本文: 刘金禹, 崔湘粤, 刘爱玲, 程潇冉, 王星宇, 王雨佳, 张淼. 压力下超导RbBSi化合物的预测[J]. 高压物理学报, 2024, 38(2): 020107. doi: 10.11858/gywlxb.20230765
LIU Jinyu, CUI Xiangyue, LIU Ailing, CHENG Xiaoran, WANG Xingyu, WANG Yujia, ZHANG Miao. Prediction of Superconducting RbBSi  Compounds under Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020107. doi: 10.11858/gywlxb.20230765
Citation: LIU Jinyu, CUI Xiangyue, LIU Ailing, CHENG Xiaoran, WANG Xingyu, WANG Yujia, ZHANG Miao. Prediction of Superconducting RbBSi  Compounds under Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020107. doi: 10.11858/gywlxb.20230765

Prediction of Superconducting RbBSi  Compounds under Pressure

doi: 10.11858/gywlxb.20230765
Funds: Jilin Provincial Science and Technology Development Joint Fund Project (YDZJ202201ZYTS581); Scientific and Technological Research Project of Jilin Province Education Department (Grant No. JJKH20240077KJ)
More Information
    Author Bios:

    Liu Jinyu (2000-), female, postgraduate, mainly focuses on the materials science at extreme condition. E-mail: liujinyu2577@163.com

    Cui Xiangyue (1995-), female, doctoral student, mainly focuses on the materials science at extreme condition. E-mail: nacy_cuixiangyue@126.com

    Corresponding author: Zhang Miao (1981-), female, professor, mainly focuses on the computational design of novel functional materials and materials science at extreme condition. E-mail: zhangmiaolmc@126.com
  • 摘要: 对RbBSi化合物在0~100 GPa压力范围内进行了广泛的群体智能结构搜索。提出了RbBSi的3种不同相,并通过第一性原理计算了其稳定性、电子结构和潜在的超导电性。在所研究的压力范围内,所有预测相在热力学和动力学上都是稳定的。3个相的能带都穿过费米能级,表明结构具备金属性。此外,P4/nmm-RbBSi在常压下的超导转变温度为14.4 K。这项工作加深了人们对碱金属硼硅化合物在超导体领域的理解,有望拓宽碱金属硼硅化合物在超导体领域的应用。

     

  • Figure  1.  The predicted crystal structures of the RbBSi: (a) P63/mmc, (b) C2/m, and (c) P4/nmm

    Figure  2.  Calculated formation enthalpies of RbBSi compounds with the P63mmc, C2/m, and P4/nmm structures

    Figure  3.  Phonon dispersion curves of the three structre of RbBSi under different pressures: (a) P63/mmc at 0 GPa, (b) C2/m at 0 GPa, (c) P4/nmm at 0 GPa, (d) P63/mmc at 10 GPa, (e) C2/m at 20 GPa, (f) P4/nmm at 40 GPa

    Figure  4.  Calculated band and densities of electronic states of RbBSi: (a) and (d) P63/mmc at 10 GPa, (b) and (e) C2/m at 20 GPa, (c) and (f) P4/nmm at 40 GPa

    Figure  5.  Calculated phonon dispersions, projected phonon density of states and Eliashberg spectral function α2F(ω) of the P4/nmm-RbBSi at standard atmospheric pressure

    Table  1.   Detailed structure information of the predicted RbBSi compounds at standard atmospheric pressure

    Space group Lattice parameters Atomic positions
    P63/mmc a = b = 3.549 Å,c = 11.365 Å
    α = β = 90°,γ = 120°
    Rb 2a (0, 0, 0)
    B 2d (0.667, 0.333, 0.250)
    Si 2c (0.667, 0.333, 0.750)
    C2/m a = 9.004 Å,b = 3.518 Å,c = 11.226 Å
    α = γ = 90°,β = 109.3642°
    Rb 4i (0.532, 0, 0.770)
    B 4i (0.903, 0, 0.489)
    Si 4i (0.770, 0.500, 0.424)
    P4/nmm a = b = 3.752 Å,c = 11.170 Å
    α = β = γ = 90°
    Rb 8j (0, 0.500, 0.736)
    B 8j (0, 0.500, 0.084)
    Si 4d (0.500, 0.500, 0)
    下载: 导出CSV
  • [1] LARBALESTIER D, CANFIELD P C. Superconductivity at 100—where we’ve been and where we’re going [J]. MRS Bulletin, 2011, 36(8): 590–593. doi: 10.1557/mrs.2011.174
    [2] ANLAGE S M. The physics and applications of superconducting metamaterials [J]. Journal of Optics, 2011, 13(2): 024001. doi: 10.1088/2040-8978/13/2/024001
    [3] HASSENZAHL W V, HAZELTON D W, JOHNSON B K, et al. Electric power applications of superconductivity [J]. Proceedings of the IEEE, 2004, 92(10): 1655–1674. doi: 10.1109/JPROC.2004.833674
    [4] GREENBERG Y S. Application of superconducting quantum interference devices to nuclear magnetic resonance [J]. Reviews of Modern Physics, 1998, 70(1): 175–222. doi: 10.1103/RevModPhys.70.175
    [5] MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
    [6] JEON H, WANG C Z, LIU S Y, et al. Electron-phonon coupling and superconductivity in an alkaline earth hydride CaH6 at high pressures [J]. New Journal of Physics, 2022, 24(8): 083048. doi: 10.1088/1367-2630/ac8a0c
    [7] QIAN S F, SHENG X W, YAN X Z, et al. Theoretical study of stability and superconductivity of ScH n ( n=4–8) at high pressure [J]. Physical Review B, 2017, 96(9): 094513. doi: 10.1103/PhysRevB.96.094513
    [8] TROYAN I A, SEMENOK D V, KVASHNIN A G, et al. Anomalous high-temperature superconductivity in YH6 [J]. Advanced Materials, 2021, 33(15): 2006832. doi: 10.1002/adma.202006832
    [9] MA L, WANG K, XIE Y, et al. High-Tc superconductivity in clathrate calcium hydride CaH6 [EB/OL]. arXiv: 2103.16282, (2021-11-04)[2023-10-24]. https://arxiv.org/abs/2103.16282.
    [10] WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466.
    [11] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [12] SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
    [13] LIU H Y, NAUMOV I I, GEBALLE Z M, et al. Dynamics and superconductivity in compressed lanthanum superhydride [J]. Physical Review B, 2018, 98(10): 100102. doi: 10.1103/PhysRevB.98.100102
    [14] LU S Y, LIU H Y, NAUMOV I I, et al. Superconductivity in dense carbon-based materials [J]. Physical Review B, 2016, 93(10): 104509. doi: 10.1103/PhysRevB.93.104509
    [15] SANO K, MASUDA Y, ITO H. Superconductivity of carbon compounds with sodalite structure [J]. Journal of the Physical Society of Japan, 2022, 91(8): 083703. doi: 10.7566/JPSJ.91.083703
    [16] LI X, YONG X, WU M, et al. Hard BN clathrate superconductors [J]. The Journal of Physical Chemistry Letters, 2019, 10(10): 2554–2560. doi: 10.1021/acs.jpclett.9b00619
    [17] ZHU L, STROBEL T A, COHEN R E. Prediction of an extended ferroelectric clathrate [J]. Physical Review Letters, 2020, 125(12): 127601. doi: 10.1103/PhysRevLett.125.127601
    [18] CUI X Y, HILLEKE K P, WANG X Y, et al. RbB3Si3: an alkali metal borosilicide that is metastable and superconducting at 1 atm [J]. The Journal of Physical Chemistry C, 2020, 124(27): 14826–14831. doi: 10.1021/acs.jpcc.0c04617
    [19] ZIPOLI F, BERNASCONI M, BENEDEK G. Electron-phonon coupling in halogen-doped carbon clathrates from first principles [J]. Physical Review B, 2006, 74(20): 205408. doi: 10.1103/PhysRevB.74.205408
    [20] ZHU L, BORSTAD G M, LIU H Y, et al. Carbon-boron clathrates as a new class of sp3-bonded framework materials [J]. Science Advances, 2020, 6(2): eaay8361. doi: 10.1126/sciadv.aay8361
    [21] ZHANG P Y, LI X, YANG X, et al. Path to high- Tc superconductivity via Rb substitution of guest metal atoms in the SrB3C3 clathrate [J]. Physical Review B, 2022, 105(9): 094503. doi: 10.1103/PhysRevB.105.094503
    [22] WANG J N, YAN X W, GAO M. High-temperature superconductivity in SrB3C3 and BaB3C3 predicted from first-principles anisotropic Migdal-Eliashberg theory [J]. Physical Review B, 2021, 103(14): 144515. doi: 10.1103/PhysRevB.103.144515
    [23] KIEFER F, KARTTUNEN A J, DÖBLINGER M, et al. Bulk synthesis and structure of a microcrystalline allotrope of germanium ( m- allo-Ge) [J]. Chemistry of Materials, 2011, 23(20): 4578–4586. doi: 10.1021/cm201976x
    [24] ZHANG H J, REN J D, WU L L, et al. Predicted semiconductor to metal transition from LiBSi2 to RbBSi2 by first-principles calculations [J]. Computational Materials Science, 2016, 124: 267–272. doi: 10.1016/j.commatsci.2016.08.002
    [25] KARTTUNEN A J, FÄSSLER T F, LINNOLAHTI M, et al. Structural principles of semiconducting group 14 clathrate frameworks [J]. Inorganic Chemistry, 2011, 50(5): 1733–1742. doi: 10.1021/ic102178d
    [26] YAN H Y, CHEN L, WEI Z T, et al. Superhard high-pressure structures of beryllium diborocarbides [J]. Vacuum, 2020, 180: 109617. doi: 10.1016/j.vacuum.2020.109617
    [27] LAZICKI A, YOO C S, CYNN H, et al. Search for superconductivity in LiBC at high pressure: diamond anvil cell experiments and first-principles calculations [J]. Physical Review B, 2007, 75(5): 054507. doi: 10.1103/PhysRevB.75.054507
    [28] WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
    [29] WANG Y C, LV J, ZHU L, et al. CALYPSO: a method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008
    [30] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [31] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1992, 46(11): 6671–6687. doi: 10.1103/PhysRevB.46.6671
    [32] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [33] TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Physical Review B, 2008, 78(13): 134106. doi: 10.1103/PhysRevB.78.134106
    [34] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J]. Journal of Physics:Condensed Matter, 2009, 21(39): 395502. doi: 10.1088/0953-8984/21/39/395502
    [35] DEGTYAREVA O. Crystal structure of simple metals at high pressures [J]. High Pressure Research, 2010, 30(3): 343–371. doi: 10.1080/08957959.2010.508877
    [36] OGANOV A R, SOLOZHENKO V L, GATTI C, et al. The high-pressure phase of boron, γ-B28: disputes and conclusions of 5 years after discovery [J]. Journal of Superhard Materials, 2011, 33(6): 363–379. doi: 10.3103/S1063457612060019
    [37] CUI X Y, ZHANG M, GAO L L. Exploration of AB3Si3 (A=Na/K/Rb/Cs) compounds under moderate pressure [J]. Physical Chemistry Chemical Physics, 2023, 25(35): 23847–23854. doi: 10.1039/D3CP02930A
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  7
  • PDF下载量:  13
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2024-01-22
  • 录用日期:  2024-01-22
  • 网络出版日期:  2024-04-11
  • 刊出日期:  2024-04-05

目录

    /

    返回文章
    返回