基于同步辐射的强冲击荷载下原位诊断技术及其应用研究进展

陈森 侯琪玥 王倩男 李江涛 吕超 张兵兵 谢红兰 李可 汪俊 胡建波

陈森, 侯琪玥, 王倩男, 李江涛, 吕超, 张兵兵, 谢红兰, 李可, 汪俊, 胡建波. 基于同步辐射的强冲击荷载下原位诊断技术及其应用研究进展[J]. 高压物理学报, 2023, 37(5): 050104. doi: 10.11858/gywlxb.20230747
引用本文: 陈森, 侯琪玥, 王倩男, 李江涛, 吕超, 张兵兵, 谢红兰, 李可, 汪俊, 胡建波. 基于同步辐射的强冲击荷载下原位诊断技术及其应用研究进展[J]. 高压物理学报, 2023, 37(5): 050104. doi: 10.11858/gywlxb.20230747
CHEN Sen, HOU Qiyue, WANG Qiannan, LI Jiangtao, LYU Chao, ZHANG Bingbing, XIE Honglan, LI Ke, WANG Jun, HU Jianbo. Progress on Synchrotron Based in-Situ Dynamic X-Ray Diagnostics and Its Applications[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050104. doi: 10.11858/gywlxb.20230747
Citation: CHEN Sen, HOU Qiyue, WANG Qiannan, LI Jiangtao, LYU Chao, ZHANG Bingbing, XIE Honglan, LI Ke, WANG Jun, HU Jianbo. Progress on Synchrotron Based in-Situ Dynamic X-Ray Diagnostics and Its Applications[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050104. doi: 10.11858/gywlxb.20230747

基于同步辐射的强冲击荷载下原位诊断技术及其应用研究进展

doi: 10.11858/gywlxb.20230747
基金项目: 国家自然科学基金(12072331,12102410);冲击波物理与爆轰物理重点实验室基金(2021JCJQLB05705)
详细信息
    作者简介:

    陈 森(1993-),男,博士,副研究员,主要从事同步辐射原位动态诊断技术与材料多尺度动态行为研究. E-mail:senchen02@163.com

  • 中图分类号: O521.3; O521.2

Progress on Synchrotron Based in-Situ Dynamic X-Ray Diagnostics and Its Applications

  • 摘要: 强冲击荷载下材料的微介观动态行为是动态压缩科学中的重要研究内容,但长期以来由于缺乏原位动态跨尺度表征技术而进展缓慢。以同步辐射为典型代表的先进X射线光源的出现为该问题的解决提供了革命性的机遇与挑战。依托同步辐射光源,近年来对强冲击荷载下材料的动态变形、损伤失效、固-固相变、熔化等问题研究取得了重要突破。聚焦基于同步辐射的强冲击荷载下原位诊断技术及其应用研究进展,简要介绍了同步辐射光源的特性、同步辐射光源与动态加载装置的结合、相关仿真计算方法的发展以及典型科学问题的应用。

     

  • 图  (a) 同步辐射装置的典型结构示意图(包含储存环、电子枪、射频腔、光源器件及其相应的束线实验站)[2],(b)高能($\beta \approx 1$,红色)和低能($\beta \ll 1$,蓝色)电子束团绕圆周运动时的典型辐射场[5]

    Figure  1.  (a) Generic scheme of a synchrotron radiation facility with its accelerator (storage ring), the electron injector, a radiofrequency cavity, and X-ray source devices of different types with their beamlines[2]; (b) radiation pattern of charged particles moving in a circular path: high-energy ($ \beta \approx 1 $, red) and low-energy ($\beta \ll 1$, blue)

    图  ESRF中适用于动态单发实验的典型束团填充模式(红色束团适用于动态单发实验)

    Figure  2.  Typical filling patterns of bunches generally used in dynamic single-shot experiments with ESRF(Bunches in red color are suitable for dynamic single-shot experiments.)

    图  不同光源器件的X射线能谱(能谱均使用SPECTRA程序计算)[1415]

    Figure  3.  Integrated X-ray spectra for different sources (All spectra are calculated using SPECTRA)[1415]

    图  波荡器光源产生的X射线能谱特性(使用SPECTRA计算)[1415]

    Figure  4.  Characteristics of X-ray spectra for undulator sources (All patterns are calculated using SPECTRA)[1415]

    图  动态实验中使用的X射线光学器件[16, 20, 2829]

    Figure  5.  X-ray optics generally used in time-resolved dynamic experiments[16, 20, 2829]

    图  典型的动态加载装置与同步辐射结合[3, 31, 3435]

    Figure  6.  Typical dynamic loading capabilities implemented in synchrotrons[3, 31, 3435]

    图  基于同步辐射的动态物质科学研究平台[30, 38]

    Figure  7.  Synchrotron based research platforms for dynamic compression sciences[30, 38]

    图  欧洲XFEL团队提出的基于XFEL和同步辐射的动态实验全流程模拟流程[45]

    Figure  8.  Start-to-end simulation workflow for dynamic experiments for XFELs and synchrotrons proposed by team of European XFEL[45]

    图  X射线衍射和散射信号模拟实例:(a) SLADS计算的各向异性密实纳米颗粒系统的SAXS谱[44],(b) GAPD计算的基于真实同步辐射粉光能谱的多晶衍射信号[58],(c) 利用LauePt4模拟的单晶劳厄衍射信号[57],(d) 利用LAMMPS内嵌模块计算的bcc铁在冲击过程中的衍射信号[62]

    Figure  9.  Examples of X-ray diffraction and scattering pattern simulations: (a) SAXS pattern for a large, anisotropic dense particle system calculated using SLADS[44]; (b) diffraction pattern for a polycrystalline system with pink synchrotron beam calculated using GAPD[58]; (c) Laue pattern simulation and indexing using LauePt4[57]; (d) diffraction patterns of bcc-Fe during impact calculated using packages implemented in LAMMPS[62]

    图  10  基于BSRF开展的霍普金森杆加载下单晶镁的原位X射线衍射测量[35]:(a)原位静态劳厄衍射图,(b) 原位动态劳厄衍射图, (c) 沿<0001>拉伸时拓展孪晶示意图,(d) 拓展孪晶与母体的取向关系,(e) 分子动力学模拟结果

    Figure  10.  In-situ X-ray diffraction measurements under split Hopkinson bar loading based on BSRF[35]: (a) static Laue diffraction pattern; (b) dynamic Laue diffraction pattern; (c) schematic of the extension twinning mechanism for tension loading along <0001>; (d) pole figure of extension twinning and parent matrix; (e) corresponding molecular dynamics simulation results

    图  11  冲击加载下金的高压层错研究[87]:(a) 原位纳秒X射线衍射实验示意图,(b) 典型结果,(c) 冲击加载下金的应力-体积关系

    Figure  11.  Investigations on stacking faults in shock-compressed gold[87]: (a) schematic diagram for in situ nanosecond X-ray diffraction measurements in shock-compressed gold; (b) representative results; (c) stress-volume states of shock-compressed gold

    图  12  气炮冲击荷载下单晶KCl的B1-B2相变机理研究[90]:(a) 实验装置示意图,(b) 加载几何,(c) 典型自由面速度曲线,(d)~(g)修正的WTM模型

    Figure  12.  Investigations on the B1-B2 phase transition of KCl under gas gun shock loading[90]: (a) experiment set up,(b) shock directions, (d) free surface velocity histories, (d)–(g) modified WTM model

    图  13  冲击应力对Ge冲击熔化影响的原位X射线衍射研究[103]:(a) 实验几何,(b)自由面速度曲线,(c)~(d)原位衍射图,(e) 不同峰值压力下液态Ge的体积分数变化曲线

    Figure  13.  In-situ X-ray diffraction investigations on the effects of peak shock stress on the shock melting of Ge[103]:(a) experimental configuration; (b) free surface velocity histories; (c)−(d) in-situ diffraction patterns;(e) Ge liquid volume fraction as a function of time for different peak stresses

    表  1  基于同步辐射装置的动态压缩科学研究平台

    Table  1.   Synchrotron based research platforms for dynamic compression sciences

    BeamlineLoading capabilitiesGeographic domainsStatusRef.
    35ID@APSGas guns (about 6 km/s), ns-laser (100 J)USRunning[3, 30]
    32ID@APSGas gun, SHPB/SHTBUSRunning[31]
    ID19@ESRFGas gun, SHPBEuropeRunning[38, 4041]
    ID24@ESRFns-laser (100 J)EuropeRunning[38, 40]
    NW14Ans-laser (16 J)JapanRunning[4]
    SDB@HEPSGas gun, laser, SHPB/SHTBChinaConstruction
    BL16U2@SSRFGas gun, SHPB/SHTBChinaRunning
    下载: 导出CSV

    表  2  同步辐射X射线光学模拟工具[15, 4655]

    Table  2.   Toolkits for simulations of sources and optics for synchrotron X-rays[15, 4655]

    Software Ref. Organization
    XOP [4647] ESRF, APS
    XRT (X-ray tracer) [48] MAX Ⅳ Laboratory, Canadian Light Source
    SHADOW [4952] ESRF
    SPECTRA [1415] RIKEN SPring-8 Center
    OASYS [53] Argonne National Laboratory, ESRF
    SRW [5455] ESRF
    下载: 导出CSV

    表  3  X射线衍射和散射信号的模拟工具[44, 5660]

    Table  3.   Softwares for simulations of X-ray diffraction and scattering[44, 5660]

    SoftwareRef.
    LAMMPS* XRD[60]
    SLADS/GAPD[44, 58]
    LauePt[5657]
    Debyer[59]
    下载: 导出CSV

    表  4  同步辐射X射线衍射和散射信号处理与分析工具[43, 6567]

    Table  4.   Softwares for data processing and analysis with synchrotron based X-ray diffraction and scattering[43, 6567]

    Software Ref.
    MAUD [65]
    GSAS/GSAS-Ⅱ [66]
    HiSPOD [43]
    mTEX [67]
    下载: 导出CSV
  • [1] MEYERS M A. Dynamic behavior of materials [M]. New York, USA: Wiley Press, 1994.
    [2] HWU Y, MARGARITONDO G. Synchrotron radiation and X-ray free-electron lasers (X-FELs) explained to all users, active and potential [J]. Journal of Synchrotron Radiation, 2021, 28: 1014–1029. doi: 10.1107/S1600577521003325
    [3] CAPATINA D, D’AMICO K, NUDELL J, et al. DCS: a high flux beamline for time resolved dynamic compression science-design highlights [C]. AIP Conference Proceedings, 2016, 1741: 030036.
    [4] TAKAGI S, ICHIYANAGI K, KYONO A, et al. Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an Nd: glass laser system [J]. Journal of Synchrotron Radiation, 2019, 27: 371–377.
    [5] BHARTI A, GOYAL N. Fundamental of synchrotron radiations [M]. London, UK: IntechOpen, 2019: 3.
    [6] MOBILIO S, BOSCHERINI F, MENEGHINI C. Synchrotron radiation: basics, methods and applications [M]. Berlin: Springer, 2015.
    [7] BIZEK H. The advanced photon source list of parameters: ANL/APS/TB-26 [R]. Argonne: Argonne National Laboratory, 1996.
    [8] HETTEL R O. Status of the APS-U project [C]//12th International Particle Accelerator Conference. Campinas, 2021.
    [9] RAIMONDI P, BENABDERRAHMANE C, BERKVENS P, et al. The extremely brilliant source storage ring of the european synchrotron radiation facility [J]. Communications Physics, 2023, 6: 82. doi: 10.1038/s42005-023-01195-z
    [10] CAMMARATA M, EYBERT L, EWALD F, et al. Chopper system for time resolved experiments with synchrotron radiation [J]. Review of Scientific Instruments, 2009, 80(1): 015101. doi: 10.1063/1.3036983
    [11] EINFELD D. EBS storage ring technical design report [R]. Grénoble, France: European Synchrotron Radiation Facility, 2018.
    [12] 陈森. 基于先进光源的超快X射线散衍射诊断方法研究 [D]. 绵阳: 中国工程物理研究院, 2020.

    CHEN S. Ultra-fast X-ray diffraction/scattering diagnostics with advanced light source [D]. Mianyang: China Academy of Engineering Physics, 2020.
    [13] WILLMOTT P. An introduction to synchrotron radiation: techniques and applications [M]. Chichester: Wiley Press, 2011.
    [14] TANAKA T, KITAMURA H. SPECTRA: a synchrotron radiation calculation code [J]. Journal of Synchrotron Radiation, 2001, 8(6): 1221−1228.
    [15] TANAKA T. Major upgrade of the synchrotron radiation calculation code SPECTRA [J]. Journal of Synchrotron Radiation, 2021, 28(4): 1267−1272.
    [16] 孙小沛, 祝万钱, 徐中民, 等. 上海光源时间分辨超小角散射线多层膜单色器的设计 [J]. 核技术, 2019, 42(11): 110101.

    SUN X P, ZHU W Q, XU Z M, et al. Design of a cryo-cooled double multilayer monochromator in USAXS beamline at SSRF [J]. Nuclear Techniques, 2019, 42(11): 110101.
    [17] JIANG Z, WANG E Y, SONG R Q, et al. Optimization of a double crystal monochromator [J]. Journal of the Korean Physical Society, 2021, 79(8): 697–705. doi: 10.1007/s40042-021-00294-w
    [18] KOYAMA T, SENBA Y, YAMAZAKI H, et al. Double-multilayer monochromators for high-energy and large-field X-ray imaging applications with intense pink beams at SPring-8 BL20B2 [J]. Journal of Synchrotron Radiation, 2022, 29(5): 1265−1272.
    [19] SEREBRENNIKOV D A, DIKAYA O A, MAKSIMOVA K Y, et al. Development of a broadband double monochromator based on multilayer supermirrors for hard X-ray spectroscopy on high-intensity beams [J]. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2019, 13(6): 1209−1216.
    [20] 张帅, 侯溪. K-B镜面形高精度检测技术研究进展 [J]. 中国光学, 2020, 13(4): 660–675. doi: 10.37188/CO.2019-0231

    ZHANG S, HOU X. Research progress of high-precision surface metrology of a K-B mirror [J]. Chinese Optics, 2020, 13(4): 660–675. doi: 10.37188/CO.2019-0231
    [21] CHEN S J, PERNG S Y, TSENG P C, et al. K-B microfocusing system using monolithic flexure-hinge mirrors for synchrotron X-rays [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467/468: 283–286.
    [22] GONG X P, LU Q P, SONG Y. Mechanical design and performance evaluation of K-B mirror system for the ARPES beamline at SSRF [J]. Precision Engineering, 2016, 46: 166–176. doi: 10.1016/j.precisioneng.2016.04.011
    [23] KUJALA N, MARATHE S, SHU D M, et al. Kirkpatrick-Baez mirrors to focus hard X-rays in two dimensions as fabricated, tested and installed at the Advanced Photon Source [J]. Journal of Synchrotron Radiation, 2014, 21(4): 662−668.
    [24] SIEWERT F, BUCHHEIM J, GWALT G, et al. On the characterization of a 1 m long, ultra-precise K-B focusing mirror pair for European XFEL by means of slope measuring deflectometry [J]. Review of Scientific Instruments, 2019, 90(2): 021713. doi: 10.1063/1.5065473
    [25] KIM J, KIM H Y, PARK J, et al. Focusing X-ray free-electron laser pulses using Kirkpatrick-Baez mirrors at the NCI hutch of the PAL-XFEL [J]. Journal of Synchrotron Radiation, 2018, 25(1): 289−292.
    [26] YUMOTO H, KOYAMA T, SUZUKI A, et al. High-fluence and high-gain multilayer focusing optics to enhance spatial resolution in femtosecond X-ray laser imaging [J]. Nature Communications, 2022, 13(1): 5300. doi: 10.1038/s41467-022-33014-4
    [27] BEGUIRISTAIN H R, PIESTRUP M A, PANTELL R H, et al. Development of compound refractive lenses for X-rays [J]. AIP Conference Proceedings, 2000, 521(1): 258–266. doi: 10.1063/1.1291797
    [28] 乐孜纯, 董文, 刘魏, 等. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究 [J]. 物理学报, 2010, 59(3): 1977–1984. doi: 10.7498/aps.59.1977

    LE Z C, DONG W, LIU W, et al. Theoretical and experimental results of focusing performance for the parabolic compound X-ray refractive lenses [J]. Acta Physica Sinica, 2010, 59(3): 1977–1984. doi: 10.7498/aps.59.1977
    [29] SIMONS H, AHL S R, POULSEN H F, et al. Simulating and optimizing compound refractive lens-based X-ray microscopes [J]. Journal of Synchrotron Radiation, 2017, 24(2): 392−401.
    [30] WANG X M, RIGG P, SETHIAN J, et al. The laser shock station in the dynamic compression sector [J]. Review of Scientific Instruments, 2019, 90(5): 053901. doi: 10.1063/1.5088367
    [31] CHEN S, LI Y X, ZHANG N B, et al. Capture deformation twinning in Mg during shock compression with ultrafast synchrotron X-ray diffraction [J]. Physical Review Letters, 2019, 123(25): 255501. doi: 10.1103/PhysRevLett.123.255501
    [32] LUO S N, JENSEN B J, HOOKS D E, et al. Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the Advanced Photon Source [J]. Review of Scientific Instruments, 2012, 83(7): 073903. doi: 10.1063/1.4733704
    [33] FAN D, HUANG J W, ZENG X L, et al. Simultaneous, single-pulse, synchrotron X-ray imaging and diffraction under gas gun loading [J]. Review of Scientific Instruments, 2016, 87(5): 053903. doi: 10.1063/1.4950869
    [34] KASHKAROV A O, PRUUEL E R, TEN K A, et al. Measurements of detonation propagation in the plastic explosive in charges of small diameters using synchrotron radiation [J]. Journal of Physics: Conference Series, 2017, 899(4): 042004. doi: 10.1088/1742-6596/899/4/042004
    [35] LI Y X, HUANG J W, FAN D, et al. Deformation twinning in single-crystal Mg under high strain rate tensile loading: a time-resolved X-ray diffraction study [J]. International Journal of Mechanical Sciences, 2022, 220: 107106. doi: 10.1016/j.ijmecsci.2022.107106
    [36] PARAB N D, ROBERTS Z A, HARR M H, et al. High speed X-ray phase contrast imaging of energetic composites under dynamic compression [J]. Applied Physical Letters, 2016, 109(13): 131903. doi: 10.1063/1.4963137
    [37] 王桂吉, 罗斌强, 陈学秒, 等. 磁驱动平面准等熵加载装置、实验技术及应用研究新进展 [J]. 爆炸与冲击, 2021, 41(12): 121403. doi: 10.11883/bzycj-2021-0119

    WANG G J, LUO B Q, CHEN X M, et al. Recent progress on the experimental facilities, techniques and applications of magnetically driven quasi-isentropic compression [J]. Explosion and Shock Waves, 2021, 41(12): 121403. doi: 10.11883/bzycj-2021-0119
    [38] SÉVELIN-RADIGUET N, TORCHIO R, BERRUYER G, et al. Towards a dynamic compression facility at the ESRF [J]. Journal of Synchrotron Radiation, 2022, 29(1): 167−179.
    [39] OLBINADO M P, JUST X, GELET J L, et al. MHz frame rate hard X-ray phase-contrast imaging using synchrotron radiation [J]. Optics Express, 2017, 25(12): 13857–13871. doi: 10.1364/OE.25.013857
    [40] CERANTOLA V, ROSA A D, KONÔPKOVÁ Z, et al. New frontiers in extreme conditions science at synchrotrons and free electron lasers [J]. Journal of Physics: Condensed Matter, 2021, 33(27): 274003. doi: 10.1088/1361-648X/abfd50
    [41] JAKKULA P, COHEN A, LUKIĆ B, et al. Split Hopkinson tension bar and universal testing machine for high-speed X-ray imaging of materials under tension [J]. Instruments, 2022, 6(3): 38. doi: 10.3390/instruments6030038
    [42] SCHROER C G, AGAPOV I, BREFELD W, et al. PETRA Ⅳ: the ultralow-emittance source project at DESY [J]. Journal of Synchrotron Radiation, 2018, 25(5): 1277−1290.
    [43] SUN T, FEZZAA K. HiSPoD: a program for high-speed polychromatic X-ray diffraction experiments and data analysis on polycrystalline samples [J]. Journal of Synchrotron Radiation, 2016, 23(4): 1046–1053.
    [44] CHEN S, E J C, LUO S N. SLADS: a parallel code for direct simulations of scattering of large anisotropic dense nanoparticle systems [J]. Journal of Applied Crystallography, 2017, 50(3): 951–958. doi: 10.1107/S1600576717004162
    [45] FORTMANN-GROTE C, ANDREEV A A, BRIGGS R, et al. SIMEX: simulation of experiments at advanced light sources [R]. arXiv preprint arXiv: 1610.05980, 2016.
    [46] SÁNCHEZ DEL RÍO M, DEJUS R J. XOP v2.4: recent developments of the X-ray optics software toolkit [C]//Proceedings of the SPIE 8141, Advances in Computational Methods for X-Ray Optics Ⅱ. San Diego: SPIE, 2011: 814115.
    [47] SÁNCHEZ DEL RÍO M, DEJUS R J. XOP 2.1: a new version of the X-ray optics software toolkit [J]. AIP Conference Proceedings, 2004, 705(1): 784–787. doi: 10.1063/1.1757913
    [48] KLEMENTIEV K, CHERNIKOV R. Powerful scriptable ray tracing package xrt [C]//Proceedings of the SPIE 9209, Advances in Computational Methods for X-Ray Optics Ⅲ. San Diego: SPIE, 2014: 92090A.
    [49] SANCHEZ DEL RIO M, CANESTRARI N, JIANG F, et al. SHADOW3: a new version of the synchrotron X-ray optics modelling package [J]. Journal of Synchrotron Radiation, 2011, 18(5): 708−716.
    [50] REBUFFI L, SÁNCHEZ DEL RÍO M. ShadowOui: a new visual environment for X-ray optics and synchrotron beamline simulations [J]. Journal of Synchrotron Radiation, 2016, 23(6): 1357−1367.
    [51] LAI B, CERRINA F. SHADOW: a synchrotron radiation ray tracing program [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1986, 246(1): 337−341.
    [52] WELNAK C, CHEN G J, CERRINA F. SHADOW: A synchrotron radiation and X-ray optics simulation tool [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 347(1): 344−347.
    [53] REBUFFI L, SANCHEZ DEL RIO M. OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for X-ray virtual experiments [C]//Proceedings of the SPIE 10388, Advances in Computational Methods for X-Ray Optics Ⅳ. San Diego: SPIE, 2017: 103880S.
    [54] CHUBAR O, ELLEAUME P. Accurate and efficient computation of synchrotron radiation in the near field region [C]//Proceedings of the 6th European Particle Accelerator Conference. Stockholm, 1998: 1177−1179.
    [55] NASH B, CHUBAR O, GOLDRING N, et al. Detailed X-ray brightness calculations in the sirepo GUI for SRW [J]. AIP Conference Proceedings, 2019, 2054(1): 060080. doi: 10.1063/1.5084711
    [56] HUANG X R. LauePt, a graphical-user-interface program for simulating and analyzing white-beam X-ray diffraction Laue patterns [J]. Journal of Applied Crystallography, 2010, 43(4): 926–928. doi: 10.1107/S0021889810015013
    [57] HUANG V W, LIU Y, RAGHOTHAMACHAR B, et al. Upgraded LauePt4 for rapid recognition and fitting of Laue patterns from crystals with unknown orientations [J]. Journal of Applied Crystallography, 2023, 56(5): 1610−1615.
    [58] E J C, WANG L, CHEN S, et al. GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code [J]. Journal of Synchrotron Radiation, 2018, 25(2): 604-611.
    [59] Debyer [EB/OL]. [2023-09-28].https://debyer.readthedocs.io/en/latest/#.
    [60] COLEMAN S P, SPEAROT D E, CAPOLUNGO L. Virtual diffraction analysis of Ni [010] symmetric tilt grain boundaries [J].Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055020. doi: 10.1088/0965-0393/21/5/055020
    [61] TOME C, CANOVA G R, KOCKS U F, et al. The relation between macroscopic and microscopic strain hardening in fcc polycrystals [J]. Acta Metallurgica, 1984, 32(10): 1637–1653. doi: 10.1016/0001-6160(84)90222-0
    [62] MISHRA A, KUNKA C, ECHEVERRIA M J, et al. Fingerprinting shock-induced deformations via diffraction [J]. Scientific Reports, 2021, 11(1): 9872. doi: 10.1038/s41598-021-88908-y
    [63] CHEN S, CHAI H W, HE A M, et al. Resolving dynamic fragmentation of liquids at the nanoscale with ultrafast small-angle X-ray scattering [J]. Journal of Synchrotron Radiation, 2019, 26(5): 1412–1421.
    [64] ZHANG Y Y, TANG M X, CAI Y, et al. Deducing density and strength of nanocrystalline Ta and diamond under extreme conditions from X-ray diffraction [J]. Journal of Synchrotron Radiation, 2019, 26(2): 413−421.
    [65] LUTTEROTTI L, MATTHIES S, WENK H R. MAUD: a friendly Java program for material analysis using diffraction [J].IUCr: Newsletter of the CPD, 1999, 21: 14–15.
    [66] TOBY B H, VON DREELE R B. GSAS-Ⅱ : the genesis of a modern open-source all purpose crystallography software package [J].Journal of Applied Crystallography, 2013, 46(2): 544–549. doi: 10.1107/S0021889813003531
    [67] BACHMANN F, HIELSCHER R, SCHAEBEN H. Texture analysis with MTEX-free and open source software toolbox [J]. Solid State Phenomena, 2010, 160: 63–68. doi: 10.4028/www.scientific.net/SSP.160.63
    [68] GAO J L, KEDIR N, KIRK C D, et al. High-speed synchrotron X-ray phase-contrast imaging for evaluating microscale damage mechanisms and tracking cracking behaviors inside cross-ply GFRCs [J]. Composites Science and Technology, 2021, 210: 108814. doi: 10.1016/j.compscitech.2021.108814
    [69] GAO J L, FEZZAA K, CHEN W N. Multiscale dynamic experiments on fiber-reinforced composites with damage assessment using high-speed synchrotron X-ray phase-contrast imaging [J]. NDT & E International, 2022, 129: 102636. doi: 10.1016/j.ndteint.2022.102636
    [70] COHEN A, LEVI-HEVRONI D, FRIDMAN P, et al. In-situ radiography of a split-Hopkinson bar dynamically loaded materials [J]. Journal of Instrumentation, 2019, 14: T06008. doi: 10.1088/1748-0221/14/06/T06008
    [71] ZHAI X D, GUO Z R, GAO J L, et al. High-speed X-ray visualization of dynamic crack initiation and propagation in bone [J].Acta Biomaterialia, 2019, 90: 278–286. doi: 10.1016/j.actbio.2019.03.045
    [72] JENSEN B J, RAMOS K J, IVERSON A J, et al. Dynamic experiment using IMPULSE at the Advanced Photon Source [J].Journal of Physics: Conference Series, 2014, 500: 042001. doi: 10.1088/1742-6596/500/4/042001
    [73] BRANCH B A, SPECHT P E, JENSEN S, et al. Detailed meso-scale simulations of the transient deformation in additively manufactured 316L stainless steel lattices characterized by phase contrast imaging [J]. International Journal of Impact Engineering, 2022, 161: 104112. doi: 10.1016/j.ijimpeng.2021.104112
    [74] LIND J, ROBINSON A K, KUMAR M. Insight into the coordinated jetting behavior in periodic lattice structures under dynamic compression [J]. Journal of Applied Physics, 2020, 128(1): 015901. doi: 10.1063/5.0003776
    [75] ESCAURIZA E M, DUARTE J P, CHAPMAN D J, et al. Collapse dynamics of spherical cavities in a solid under shock loading [J]. Scientific Reports, 2020, 10(1): 8455. doi: 10.1038/s41598-020-64669-y
    [76] BRANCH B A, FRANK G, ABBOTT A, et al. Directional shock diode behavior through the interaction of geometric voids in engineered polymer assemblies [J]. Journal of Applied Physics, 2020, 128(24): 245903. doi: 10.1063/5.0029835
    [77] OLLES J D, HUDSPETH M C, TILGER C F, et al. The effect of liquid tamping media on the growth of Richtmyer-Meshkov instability in copper [J]. Journal of Dynamic Behavior of Materials, 2021, 7(2): 338–351. doi: 10.1007/s40870-021-00305-8
    [78] OLBINADO M P, CANTELLI V, MATHON O, et al. Ultra high-speed X-ray imaging of laser-driven shock compression using synchrotron light [J]. Journal of Physics D: Applied Physics, 2018, 51(5): 055601. doi: 10.1088/1361-6463/aaa2f2
    [79] ZHANG D S, YU C, WANG M, et al. In situ transient Laue X-ray diffraction during high strain-rate tension [J]. Review of Scientific Instruments, 2022, 93(3): 033902. doi: 10.1063/5.0079582
    [80] GLEASON A E, BOLME C A, LEE H J, et al. Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation [J]. Nature Communications, 2017, 8: 1481. doi: 10.1038/s41467-017-01791-y
    [81] MAGAGNOSC D J, LLOYD J T, MEREDITH C S, et al. Incipient dynamic recrystallization and adiabatic shear bands in Ti-7Al studied via in situ X-ray diffraction [J]. International Journal of Plasticity, 2021, 141: 102992. doi: 10.1016/j.ijplas.2021.102992
    [82] TURNEAURE S J, RENGANATHAN P, WINEY J M, et al. Twinning and dislocation evolution during shock compression and release of single crystals: real-time X-ray diffraction [J]. Physical Review Letters, 2018, 120(26): 265503. doi: 10.1103/PhysRevLett.120.265503
    [83] WILLIAMS C L, KALE C, TURNAGE S A, et al. Real-time observation of twinning-detwinning in shock-compressed magnesium via time-resolved in situ synchrotron XRD experiments [J]. Physical Review Materials, 2020, 4(8): 083603. doi: 10.1103/PhysRevMaterials.4.083603
    [84] ZHANG Y Y, XU Y F, FENG Z D, et al. Impact-induced twinning in a magnesium alloy under different stress conditions [J]. Materials Science and Engineering: A, 2021, 818: 141360. doi: 10.1016/j.msea.2021.141360
    [85] HUBER R C, WATKINS E B, DATTELBAUM D M, et al. In situ X-ray diffraction of high density polyethylene during dynamic drive: polymer chain compression and decomposition [J]. Journal of Applied Physics, 2021, 130(17): 175901. doi: 10.1063/5.0057439
    [86] GANDHI V, RAVINDRAN S, JOSHI A, et al. Real-time characterization of dislocation slip and twinning of shock-compressed molybdenum single crystals [J]. Physical Review Materials, 2023, 7(7): 073601. doi: 10.1103/PhysRevMaterials.7.073601
    [87] SHARMA S M, TURNEAURE S J, WINEY J M, et al. Real-time observation of stacking faults in gold shock compressed to 150 GPa [J]. Physical Review X, 2020, 10(1): 011010. doi: 10.1103/PhysRevX.10.011010
    [88] COLEMAN A L, SINGH S, VENNARI C E, et al. Quantitative measurements of density in shock-compressed silver up to 330 GPa using X-ray diffraction [J]. Journal of Applied Physics, 2022, 131(1): 015901. doi: 10.1063/5.0072208
    [89] D’ALMEIDA T, GUPTA Y M. Real-time X-ray diffraction measurements of the phase transition in KCl shocked along [100] [J].Physical Review Letters, 2000, 85(2): 330–333. doi: 10.1103/PhysRevLett.85.330
    [90] ZHANG Y Y, LI Y X, FAN D, et al. Ultrafast X-ray diffraction visualization of B1-B2 phase transition in KCl under shock compression [J]. Physical Review Letters, 2021, 127(4): 045702. doi: 10.1103/PhysRevLett.127.045702
    [91] HU J B, ICHIYANAGI K, DOKI T. Complex structural dynamics of bismuth under laser-driven compression [J]. Applied Physics Letters, 2013, 103: 161904.
    [92] HU J B, ICHIYANAGI K, TAKAHASHI H, et al. Reversible phase transition in laser-shocked 3Y-TZP ceramics observed via nanosecond time-resolved X-ray diffraction [J]. Journal of Applied Physics, 2012, 111: 053526.
    [93] BISHOP S R, LOWRY D R, PERETTI A S, et al. Dynamic high pressure phase transformation of ZrW2O8 [J]. AIP Advances, 2023, 13(6): 065101. doi: 10.1063/5.0147942
    [94] KALITA P, SPECHT P E, BROWN J L, et al. Real-time atomic scale kinetics of a dynamic event in a model ionic crystal [J].Minerals, 2023, 13(9): 1226. doi: 10.3390/min13091226
    [95] BEASON M T, JENSEN B J, CROCKETT S D. Shock melting and the hcp-bcc phase boundary of Mg under dynamic loading [J].Physical Review B, 2021, 104(14): 144106. doi: 10.1103/PhysRevB.104.144106
    [96] BEASON M T, JENSEN B J. Examination of the cerium α- ε phase transition under dynamic loading with X-ray diffraction [J].Physical Review B, 2022, 105(21): 214107. doi: 10.1103/PhysRevB.105.214107
    [97] SIMS M, BRIGGS R, VOLZ T J, et al. Experimental and theoretical examination of shock-compressed copper through the fcc to bcc to melt phase transitions [J]. Journal of Applied Physics, 2022, 132(7): 075902. doi: 10.1063/5.0088607
    [98] HAWRELIAK J A, TURNEAURE S J. Probing the lattice structure of dynamically compressed and released single crystal iron through the alpha to epsilon phase transition [J]. Journal of Applied Physics, 2021, 129(13): 135901. doi: 10.1063/5.0042605
    [99] SINGH S, COLEMAN A L, ZHANG S, et al. Quantitative analysis of diffraction by liquids using a pink-spectrum X-ray source [J]. Journal of Synchrotron Radiation, 2023, 29(4): 1033-1042.
    [100] DUWAL S, MCCOY C A, DOLAN Ⅲ D H, et al. Samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ X-ray diffraction [J]. Scientific Reports, 2022, 12(1): 16777. doi: 10.1038/s41598-022-21332-y
    [101] BEASON M T, JENSEN B J, BRANCH B. Investigating shock melting of metals through time-resolved X-ray diffraction of cerium [J]. Journal of Applied Physics, 2020, 128(16): 165107. doi: 10.1063/5.0024715
    [102] TURNEAURE S J, SHARMA S M, GUPTA Y M. Nanosecond melting and recrystallization in shock-compressed silicon [J].Physical Review Letters, 2018, 121(13): 135701. doi: 10.1103/PhysRevLett.121.135701
    [103] RENGANATHAN P, SHARMA S M, TURNEAURE S J, et al. Real-time (nanoseconds) determination of liquid phase growth during shock-induced melting [J]. Science Advances, 2023, 9(8): eade5745. doi: 10.1126/sciadv.ade5745
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  56
  • PDF下载量:  147
出版历程
  • 收稿日期:  2023-09-28
  • 修回日期:  2023-10-05
  • 网络出版日期:  2023-10-30
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回