砂泥岩互层岩质边坡爆破振动衰减规律现场试验研究

何丽平 汪晓俊 郭剑雄 潘剑 张继奎 蒋楠

何丽平, 汪晓俊, 郭剑雄, 潘剑, 张继奎, 蒋楠. 砂泥岩互层岩质边坡爆破振动衰减规律现场试验研究[J]. 高压物理学报, 2023, 37(5): 055301. doi: 10.11858/gywlxb.20230666
引用本文: 何丽平, 汪晓俊, 郭剑雄, 潘剑, 张继奎, 蒋楠. 砂泥岩互层岩质边坡爆破振动衰减规律现场试验研究[J]. 高压物理学报, 2023, 37(5): 055301. doi: 10.11858/gywlxb.20230666
HE Liping, WANG Xiaojun, GUO Jianxiong, PAN Jian, ZHANG Jikui, JIANG Nan. Field Experimental Research on Blasting Vibration Attenuation Law of Sand-Mudstone Interbedded Rock Slope[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055301. doi: 10.11858/gywlxb.20230666
Citation: HE Liping, WANG Xiaojun, GUO Jianxiong, PAN Jian, ZHANG Jikui, JIANG Nan. Field Experimental Research on Blasting Vibration Attenuation Law of Sand-Mudstone Interbedded Rock Slope[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055301. doi: 10.11858/gywlxb.20230666

砂泥岩互层岩质边坡爆破振动衰减规律现场试验研究

doi: 10.11858/gywlxb.20230666
基金项目: 国家自然科学基金(41972286,42072309)
详细信息
    作者简介:

    何丽平(1985-),男,硕士,高级工程师,主要从事岩土工程研究. E-mail:lipinghecsu@163.com

    通讯作者:

    蒋 楠(1986-),男,博士,副教授,主要从事工程爆破及岩石动力学研究. E-mail:jiangnan@cug.edu.cn

  • 中图分类号: O347.1; TU459

Field Experimental Research on Blasting Vibration Attenuation Law of Sand-Mudstone Interbedded Rock Slope

  • 摘要: 为保证砂泥岩互层岩质边坡在爆破振动作用下安全稳定,需明确爆破振动在砂泥岩互层岩质边坡中的衰减规律。为此,以平陆运河青年枢纽一期工程为依托,通过开展现场爆破试验,对比分析高程效应修正前后爆破振动衰减模型的拟合结果,深入研究砂泥岩互层岩质边坡的爆破振动衰减规律。结果表明:边坡岩体在爆破振动作用下的最大位移会产生高程放大效应,最终位移可能不为零;考虑高程效应的爆破振动衰减模型较未修正的萨道夫斯基公式的拟合精度更高,岩质边坡的爆破振动衰减规律应考虑高程效应;受层理倾向和倾角的影响,砂泥岩互层岩质边坡的爆破振动衰减规律存在差异,建立不同层理下的爆破振动衰减预测模型是后续重要的研究方向。

     

  • 图  平陆运河走向和青年枢纽布置

    Figure  1.  Course of the Pinglu canal and Qingnian hub layout

    图  现场试验边坡

    Figure  2.  Slope of field test

    图  现场雷达布置

    Figure  3.  Site radar layout

    图  测点布置

    Figure  4.  Layout of measuring points

    图  测点 V8的z方向振速

    Figure  5.  Vibration velocity in z-direction at measuring point V8

    图  测点D2的位移时程曲线

    Figure  6.  Displacement time history curve at measuring point D2

    表  1  志留系下统连滩群第四组岩石的物理力学参数

    Table  1.   Physical and mechanical parameters of rock mass in the fourth group of Liantan Group of Lower Silurian System

    Rock massStatistical
    project
    ρn/
    (g·cm−3)
    ρs/
    (g·cm−3)
    w/%ku/%Uniaxial compression/MPa
    NaturalDrySaturated
    1Max2.722.732.122.3869.7855.1052.00
    Min2.562.650.020.1118.1827.6018.33
    Mean2.642.700.470.5146.3239.2630.66
    2Max2.661.994.144.79
    Min2.590.370.672.47
    Mean2.63 1.432.91  3.93
    下载: 导出CSV

    表  2  志留系下统连滩群第四组岩体工程地质分类

    Table  2.   Engineering geological classification of rock mass in the fourth group of Liantan Group of Lower Silurian System

    Stratum
    lithologic
    Weathering
    degree
    Rock mass characteristicsRock mass classificationEngineering geological evaluation of rock mass
    The first section of sandstone intercalated mudstone (S1lnd-1) and the second section sandstone (S1lnd-2)Strongly weatheredThe bedding and weathering fissures are well developed; the rock mass is loose;
    the structural plane is mostly mud;
    the rock mass structures are mosaic
    structure and cataclastic structure.
    CVThe rock mass is broken; the strength is low; the anti-sliding and anti-deformation performance is poor.
    Moderately weatheredThe rock mass is mainly thin layer to medium thick layer; the structural
    plane is moderately developed and
    mostly closed; the embedded force
    between rock blocks is good.
    CThe rock mass is relatively complete; the local integrity is poor; the overall strength is high, and the anti-sliding and anti-deformation performance is controlled by the structural plane to a certain extent.
    Weakly weatheredThe rock mass is mainly thick to
    medium thick layers; the structural
    plane is moderately developed
    and mostly closed.
    CThe rock mass is complete, and the anti-sliding and anti-deformation properties are controlled by rock strength.
    The third section of sandstone and mudstone interbed
    (S1lnd-3) and the fourth section of sandstone, argillaceous siltstone with mudstone
    (S1lnd-4)
    Strongly weatheredThe bedding plane and weathering
    cracks are well developed; the rock
    mass is relaxed; the structural plane
    is mostly muddy; the rock mass
    structure is a mixture of block
    structure and fragmentation structure.
    CVThe rock mass is broken; the strength is low, and the anti-sliding and anti-deformation performance is poor.
    Moderately weatheredThe rock mass is mainly thin layer to
    medium thick layer; the structural
    plane is moderately developed and
    mostlyclosed; the embedded force
    between the rock blocks is good.
    CThe rock mass is relatively complete; the local integrity is poor, and the anti-sliding and anti-deformation performance are controlled by rock strength.
    Weekly
    weathered
    The rock mass has an interbedded
    structure; the structural plane is
    slightly developed, and the
    cracks are well bonded.
    CThe rock mass is complete, and the anti-sliding and anti-deformation properties are controlled by rock strength.
    下载: 导出CSV

    表  3  试验边坡岩层产状

    Table  3.   Rock occurrence of the test slope

    Stratification
    plane
    Slope surface 1Slope surface 2Slope surface 3
    Tendency/(°)Dip angle/(°)Tendency/(°)Dip angle/(°)Tendency/(°)Dip angle/(°)
    1252523685034534
    2265603454832528
    32695235840
    下载: 导出CSV

    表  4  试验测点振速统计结果

    Table  4.   Statistical results of vibration velocity at measuring points

    Test
    sequence
    Measuring
    point
    Height/mPPV/(cm·s−1)Blasting
    distance/m
    Charge/kg
    x-directiony-directionz-direction
    1V10.1037.7216.3835.2012.8048
    36.9216.4234.568.2342
    36.3732.7733.224.3936
    V320.131.2643.1048
    0.8639.8042
    1.0236.2036
    V550.500.571.151.2581.2048
    0.350.630.6678.9042
    0.380.740.7175.1036
    2V60.136.8512.7034.4114.2048
    9.5513.5328.7310.1042
    15.2927.9137.366.3036
    V814.012.361.502.8336.0048
    0.160.501.3232.3042
    2.300.722.7028.8036
    V1033.650.680.6167.4048
    0.500.4863.4042
    0.460.4560.6036
    3V120.1112.2416.4035.2013.4048
    13.4016.8434.129.9042
    18.3622.6338.546.1036
    V139.407.046.1410.0723.3048
    4.094.063.9319.6042
    7.549.4510.2016.3036
    V1752.630.673.0273.3048
    0.160.8070.7042
    0.422.7468.1036
    下载: 导出CSV

    表  5  测点位移统计结果

    Table  5.   Statistical results of displacement of measuring points

    Test sequenceMeasure pointMaximum displacement/mmFinal displacement/mmBlasting distance/mCharge/kg
    1D22.521.1425.9048
    D32.371.0543.1048
    D454.2048
    D50.97081.2048
    2D71.900.1229.8048
    D80.89036.0048
    D91.24046.6048
    D110.340.2793.5048
    3D133.272.6923.3048
    D140.550.2047.4048
    D150.560.2253.7048
    D160.400.2565.4048
    D170.290.2773.3048
    下载: 导出CSV

    表  6  萨道夫斯基公式的拟合结果

    Table  6.   Fitting results of Sadoevsky formula

    Test sequenceDirectionkαR2
    1x56.860.8180.720
    y43.140.9730.965
    z48.960.6190.722
    2x36.461.3070.975
    y78.021.5770.967
    z81.861.0370.719
    3x36.141.0040.929
    y43.480.9730.817
    z83.671.0550.772
    下载: 导出CSV

    表  7  考虑高程效应的拟合结果

    Table  7.   Fitting results considering elevation effect

    Test sequenceDirectionkαβR2
    1x3.480.703−0.6730.974
    y21.121.069−0.1900.968
    z4.240.588−0.5900.997
    2x22.591.242−0.1060.981
    y27.201.606−0.2690.982
    z7.810.749−0.5160.965
    3x22.530.846−0.0860.929
    y19.880.696−0.1370.910
    z15.030.542−0.3170.976
    下载: 导出CSV
  • [1] 盛谦. 深挖岩质边坡开挖扰动区与工程岩体力学性状研究 [J]. 岩石力学与工程学报, 2003, 22(10): 1761. doi: 10.3321/j.issn:1000-6915.2003.10.035

    SHENG Q. Excavation disturbed zone of deep cutting rock slopes and mechanics behaviour of engineering rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10): 1761. doi: 10.3321/j.issn:1000-6915.2003.10.035
    [2] LIU D A, YANG Z F, TANG C H, et al. An automatic monitoring system for the shiplock slope of Wuqiangxi Hydropower Station [J]. Engineering Geology, 2004, 76(1/2): 79–91. doi: 10.1016/j.enggeo.2004.06.007
    [3] 陈明, 卢文波, 李鹏, 等. 岩质边坡爆破振动速度的高程放大效应研究 [J]. 岩石力学与工程学报, 2011, 30(11): 2189–2195.

    CHEN M, LU W B, LI P, et al. Elevation amplification effect of blasting vibration velocity in rock slope [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2189–2195.
    [4] 蒋楠, 周传波, 平雯, 等. 岩质边坡爆破振动速度高程效应 [J]. 中南大学学报(自然科学版), 2014, 45(1): 237–243.

    JIANG N, ZHOU C B, PING W, et al. Altitude effect of blasting vibration velocity in rock slopes [J]. Journal of Central South University (Science and Technology), 2014, 45(1): 237–243.
    [5] AZIZABADI H R M, MANSOURI H, FOUCHÉ O. Coupling of two methods, waveform superposition and numerical, to model blast vibration effect on slope stability in jointed rock masses [J]. Computers and Geotechnics, 2014, 61: 42–49. doi: 10.1016/j.compgeo.2014.04.008
    [6] HU Y G, LU W B, WU X X, et al. Numerical and experimental investigation of blasting damage control of a high rock slope in a deep valley [J]. Engineering Geology, 2018, 237: 12–20. doi: 10.1016/j.enggeo.2018.01.003
    [7] 唐旭, 方正峰, 邹飞. 基于FLAC3D的岩质边坡爆破动力响应规律研究 [J]. 人民长江, 2019, 50(3): 198–204. doi: 10.16232/j.cnki.1001-4179.2019.03.035

    TANG X, FANG Z F, ZOU F. Study on dynamic response laws of rock slope blasting based on FLAC3D [J]. Yangtze River, 2019, 50(3): 198–204. doi: 10.16232/j.cnki.1001-4179.2019.03.035
    [8] 孙鹏昌, 卢文波, 雷振, 等. 单薄山体岩质高边坡爆破振动响应分析及安全控制 [J]. 岩土工程学报, 2021, 43(5): 877–885. doi: 10.11779/CJGE202105011

    SUN P C, LU W B, LEI Z, et al. Blasting vibration response and control of high rock slopes of thin mountain [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 877–885. doi: 10.11779/CJGE202105011
    [9] 李维光. 爆破振动作用下顺层岩质边坡稳定性研究 [D]. 成都: 西南交通大学, 2008.

    LI W G. Study on stability in rocky layered slope under blasting vibration [D]. Chengdu: Southwest Jiaotong University, 2008.
    [10] 王智德, 江俐敏, 祝文化, 等. 顺层岩质边坡爆破荷载作用下的振动传播规律研究 [J]. 爆破, 2019, 36(1): 55–62, 83. doi: 10.3963/j.issn.1001-487X.2019.01.009

    WANG Z D, JIANG L M, ZHU W H, et al. Vibration propagation characteristics of bedding rock slope under blasting loads [J]. Blasting, 2019, 36(1): 55–62, 83. doi: 10.3963/j.issn.1001-487X.2019.01.009
    [11] 厉美杰, 杜军, 王洪强, 等. 爆破振动对露天矿山永久边坡稳定性的影响分析 [J]. 爆破, 2023, 40(1): 170–176. doi: 10.3963/j.issn.1001-487X.2023.01.023

    LI M J, DU J, WANG H Q, et al. Influence analysis of blasting vibration on stability of permanent slope in open-pit mine [J]. Blasting, 2023, 40(1): 170–176. doi: 10.3963/j.issn.1001-487X.2023.01.023
    [12] 张祺. 爆破作用下软硬互层斜坡动力响应及破坏机理研究 [D]. 成都: 成都理工大学, 2019.

    ZHANG Q. Study on dynamic response characteristics and failure mechanism of soft and hard interlayer slopes under blasting [D]. Chengdu: Chengdu University of Technology, 2019.
    [13] 肖正学, 郭学彬, 张继春, 等. 含软弱夹层顺倾边坡爆破层裂效应的数值模拟与试验研究 [J]. 岩土力学, 2009, 30(Suppl 1): 15–18, 23. doi: 10.3969/j.issn.1000-7598.2009.z1.004

    XIAO Z X, GUO X B, ZHANG J C, et al. Numerical simulation and test of lamination effect caused by blasting in layered rock slope with weak intercalated layer [J]. Rock and Soil Mechanics, 2009, 30(Suppl 1): 15–18, 23. doi: 10.3969/j.issn.1000-7598.2009.z1.004
    [14] 王智德, 夏元友, 周雄, 等. 顺层岩质边坡爆破的振动控制及损伤特性 [J]. 爆炸与冲击, 2017, 37(1): 27–36. doi: 10.11883/1001-1455(2017)01-0027-10

    WANG Z D, XIA Y Y, ZHOU X, et al. Blasting vibration control and damage characteristics of bedding rock slopes [J]. Explosion and Shock Waves, 2017, 37(1): 27–36. doi: 10.11883/1001-1455(2017)01-0027-10
    [15] 刘蕾, 陈亮, 崔振华, 等. 逆层岩质边坡地震动力破坏过程FLAC/PFC2D耦合数值模拟分析 [J]. 工程地质学报, 2014, 22(6): 1257–1262. doi: 10.13544/j.cnki.jeg.2014.06.033

    LIU L, CHEN L, CUI Z H, et al. FLAC/PFC2D hybrid simulation for seismically induced failure process of toppling rock slope [J]. Journal of Engineering Geology, 2014, 22(6): 1257–1262. doi: 10.13544/j.cnki.jeg.2014.06.033
    [16] 中华人民共和国住房和城乡建设部. 水利水电工程地质勘察规范: GB 50487—2008 [S]. 北京: 中国计划出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for engineering geological investigation of water resources and hydropower: GB 50487—2008 [S]. Beijing: China Planning Press, 2009.
    [17] 贺可强, 郭栋, 张朋, 等. 降雨型滑坡垂直位移方向率及其位移监测预警判据研究 [J]. 岩土力学, 2017, 38(12): 3649–3659. doi: 10.16285/j.rsm.2017.12.033

    HE K Q, GUO D, ZHANG P, et al. The direction ratio of vertical displacement for rainfall-induced landslides and its early warning criterion [J]. Rock and Soil Mechanics, 2017, 38(12): 3649–3659. doi: 10.16285/j.rsm.2017.12.033
    [18] 张继奎, 蒋楠, 周传波, 等. 爆破振动影响下人体舒适度振动台试验及其评价体系构建 [J]. 工程科学学报, 2023, 45(2): 326–335. doi: 10.13374/j.issn2095-9389.2022.04.20.001

    ZHANG J K, JIANG N, ZHOU C B, et al. Vibrating table test of human comfort under blasting vibration and its evaluation system construction [J]. Chinese Journal of Engineering, 2023, 45(2): 326–335. doi: 10.13374/j.issn2095-9389.2022.04.20.001
    [19] 朱斌, 蒋楠, 贾永胜, 等. 下穿燃气管道爆破振动效应现场试验研究 [J]. 岩石力学与工程学报, 2019, 38(12): 2582–2592. doi: 10.13722/j.cnki.jrme.2019.0183

    ZHU B, JIANG N, JIA Y S, et al. Field experiment on blasting vibration effect of underpass gas pipelines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2582–2592. doi: 10.13722/j.cnki.jrme.2019.0183
    [20] 吉凌, 周传波, 张波, 等. 大断面隧道爆破作用下围岩动力响应特性与损伤效应研究 [J]. 铁道学报, 2021, 43(7): 161–168. doi: 10.3969/j.issn.1001-8360.2021.07.021

    JI L, ZHOU C B, ZHANG B, et al. Study on dynamic response and damage effect of surrounding rock in large tunnel under blasting excavation [J]. Journal of the China Railway Society, 2021, 43(7): 161–168. doi: 10.3969/j.issn.1001-8360.2021.07.021
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  39
  • PDF下载量:  63
出版历程
  • 收稿日期:  2023-05-17
  • 修回日期:  2023-06-07
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回