圆形手性多胞管轴向冲击下的耐撞性分析

黄翠萍 邓小林

黄翠萍, 邓小林. 圆形手性多胞管轴向冲击下的耐撞性分析[J]. 高压物理学报, 2023, 37(3): 034107. doi: 10.11858/gywlxb.20230616
引用本文: 黄翠萍, 邓小林. 圆形手性多胞管轴向冲击下的耐撞性分析[J]. 高压物理学报, 2023, 37(3): 034107. doi: 10.11858/gywlxb.20230616
HUANG Cuiping, DENG Xiaolin. Crashworthiness Analysis of Circular Chiral Multicellular Tubes under Axial Impact[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034107. doi: 10.11858/gywlxb.20230616
Citation: HUANG Cuiping, DENG Xiaolin. Crashworthiness Analysis of Circular Chiral Multicellular Tubes under Axial Impact[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034107. doi: 10.11858/gywlxb.20230616

圆形手性多胞管轴向冲击下的耐撞性分析

doi: 10.11858/gywlxb.20230616
基金项目: 国家自然科学基金(52065059);梧州学院校级科研项目(2022C013)
详细信息
    作者简介:

    黄翠萍(1992-),女,硕士,讲师,主要从事结构耐撞性与吸能研究.E-mail:huangcuiping59451@163.com

    通讯作者:

    邓小林(1984-),男,博士,教授,主要从事结构耐撞性及优化设计研究.E-mail:dengxiaolin3@163.com

  • 中图分类号: O342

Crashworthiness Analysis of Circular Chiral Multicellular Tubes under Axial Impact

  • 摘要: 提出了不同几何结构的新型圆形手性多胞管,开展了其在相同壁厚、相同质量条件下的耐撞性分析。研究结果表明:与传统圆管相比,圆形手性多胞管具有更好的耐撞性能;相同壁厚条件下,比能量吸收和冲击力效率比传统圆管最高分别高出66.19%和49.11%;吸能效果最好的CCMT7-20(肋板数量为7、内圆直径为20 mm)与耐撞性能最差的CCMT4-40肋板数量为4、内圆直径为40 mm)的圆形手性多胞管相比,比能量吸收和冲击力效率分别高出30.83%和22.87%。肋板数量、内圆直径和壁厚对结构耐撞性的参数化研究表明:能量吸收、初始峰值力均随着肋板数量增加而增大,比能量吸收随着肋板数量的增多变化并不明显。能量吸收、比能量吸收和冲击力效率均随着内圆直径增大而减小,管壁增厚会提升结构的能量吸收,但其初始峰值力也会相应增大。

     

  • 图  横截面形状及结构设计

    Figure  1.  Cross-section shape and structural design

    图  冲击模型示意图及铝合金6061O的材料属性

    Figure  2.  Schematic diagram of the impact model and material properties of aluminum alloy 6061O

    图  网格尺寸测试

    Figure  3.  Mesh size test

    图  数值模拟与实验结果[16]的对比

    Figure  4.  Comparison between numerical simulation and experiment results[16]

    图  壁厚相同时结构的能量吸收和力-位移曲线

    Figure  5.  Energy absorption and force-displacement curves of structures with the same wall thickness

    图  壁厚相同时多胞管的最终变形模式

    Figure  6.  Final deformation modes of multicellular tubes with the same wall thickness

    图  壁厚相同时结构的耐撞性分析曲线

    Figure  7.  Crashworthiness analysis curves of structures with the same wall thickness

    图  相同质量下结构的能量吸收和力-位移曲线

    Figure  8.  Energy absorption and force-displacement curves of structures with the same mass

    图  相同质量多胞管的变形模式

    Figure  9.  Deformation modes of multicellular tubes with the same mass

    图  10  相同质量结构的耐撞性数据分析

    Figure  10.  Crashworthiness data analysis of structures with the same mass

    图  11  不同肋板数量多胞管的能量吸收和力-位移曲线

    Figure  11.  Energy absorption and force-displacement curves of multicellular tubes with different rib numbers

    图  12  h=1.0 mm时圆形手性多胞管的变形模式

    Figure  12.  Deformation pattern of circular chiral multicellular tubes with h=1.0 mm

    图  13  不同肋板数多胞管的耐撞性数据分析

    Figure  13.  Crashworthiness data analysis of multicellular tubes with different rib numbers

    图  14  不同内圆直径下多胞管的能量吸收和力-位移曲线

    Figure  14.  Energy absorption and force-displacement curves of multicellular tubes with different inner circle diameters

    图  15  不同内圆直径下多胞管的耐撞性分析曲线

    Figure  15.  Crashworthiness analysis curves of multicellular tubes with different inner circle diameters

    图  16  不同壁厚多胞管的耐撞性分析曲线

    Figure  16.  Crashworthiness analysis curves of multicellular tubes with different wall thicknesses

    表  1  壁厚相同时结构的耐撞性数据

    Table  1.   Crashworthiness data of structures with the same wall thickness

    Multicellular tubesh/mmm/kgEA/JESA/(kJ·kg–1)FI/kNη/%
    TCT1.00.0509646.0112.6918.4443.78
    CCMT4-201.00.09841784.2818.1338.3058.23
    CCMT5-201.00.10602116.1019.9642.0762.87
    CCMT6-201.00.11292234.8719.9544.7562.42
    CCMT7-201.00.12132552.0521.0948.8765.28
    CCMT4-301.00.10441834.2117.6340.4156.74
    CCMT5-301.00.11142045.3118.4343.4558.83
    CCMT6-301.00.11842196.2918.6146.6358.87
    CCMT7-301.00.12542327.5618.6249.4258.88
    CCMT4-401.00.10891756.7016.1241.3353.13
    CCMT5-401.00.11502026.0617.6243.8257.79
    CCMT6-401.00.12102143.3817.7146.4057.74
    CCMT7-401.00.12702219.6817.4848.9556.68
    下载: 导出CSV

    表  2  相同质量结构的耐撞性对比数据

    Table  2.   Comparison of crashworthiness data of structures with the same mass

    Multicellular tubesh/mmm/kgEA/JESA/(kJ·kg–1)FI/kNη/%
    TCT1.0000.0509646.0112.6918.4443.78
    CCMT4-200.5170.0509699.7213.7517.4650.10
    CCMT5-200.4800.0509696.7813.6917.2050.64
    CCMT6-200.4560.0509682.1113.4017.4148.97
    CCMT7-200.4200.0509687.6113.5117.0550.40
    CCMT4-300.4880.0509612.8512.0216.9645.18
    CCMT5-300.4570.0509636.9812.5116.8647.24
    CCMT6-300.4300.0509642.3512.6216.7747.89
    CCMT7-300.4060.0509642.0012.6116.6448.22
    CCMT4-400.4670.0509560.7611.0216.6442.13
    CCMT5-400.4430.0509594.3111.6816.5344.94
    CCMT6-400.4210.0509618.5812.1516.4147.11
    CCMT7-400.4010.0509608.4611.9515.9647.64
    下载: 导出CSV
  • [1] GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminium tubes [J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103–2123. doi: 10.1016/S0020-7403(01)00031-5
    [2] ANDREWS K R F, ENGLAND G L, GHANI E. Classification of the axial collapse of cylindrical tubes under quasi-static loading [J]. International Journal of Mechanical Sciences, 1983, 25(9/10): 687–696. doi: 10.1016/0020-7403(83)90076-0
    [3] NIA A A, HAMEDANI J H. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries [J]. Thin-Walled Structures, 2010, 48(12): 946–954. doi: 10.1016/j.tws.2010.07.003
    [4] SONG J F, XU S C, LIU S F, et al. Study on the crashworthiness of bio-inspired multi-cell tube under axial impact [J]. International Journal of Crashworthiness, 2022, 27(2): 390–399. doi: 10.1080/13588265.2020.1807686
    [5] LI Z X, MA W, YAO S G, et al. Crashworthiness performance of corrugation-reinforced multicell tubular structures [J]. International Journal of Mechanical Sciences, 2021, 190: 106038. doi: 10.1016/j.ijmecsci.2020.106038
    [6] ZHANG J X, YE Y, ZHU Y Q, et al. On axial splitting and curling behaviour of circular sandwich metal tubes with metal foam core [J]. International Journal of Solids and Structures, 2020, 202: 111–125. doi: 10.1016/j.ijsolstr.2020.06.021
    [7] ZHANG J X, GUO H Y. Large deflection of rectangular sandwich tubes with metal foam core [J]. Composite Structures, 2022, 293: 115745. doi: 10.1016/j.compstruct.2022.115745
    [8] ZHANG J X, YE Y, YUAN H, et al. A theoretical study of low-velocity impact of metal foam-filled circular tubes [J]. Thin-Walled Structures, 2020, 148: 106525. doi: 10.1016/j.tws.2019.106525
    [9] SINGH S K, PANDEY R, UPADHYAY A. A numerical study on combined effects of groove shape and numbers on crashworthiness characteristics of thin-walled tube [J]. Materials Today: Proceedings, 2021, 44: 4381–4386. doi: 10.1016/j.matpr.2020.10.571
    [10] ZHANG J X, DU J L, MIAO F X, et al. Plastic behavior of slender circular metal foam-filled tubes under transverse loading [J]. Thin-Walled Structures, 2022, 171: 108768. doi: 10.1016/j.tws.2021.108768
    [11] HE Q, WANG Y H, SHI X N, et al. Crushing behavior on the cylindrical tube based on lotus leaf vein branched structure [J]. Mechanics of Materials, 2022, 165: 104205. doi: 10.1016/j.mechmat.2021.104205
    [12] HA N S, PHAM T M, CHEN W S, et al. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing [J]. Thin-Walled Structures, 2021, 169: 108315. doi: 10.1016/j.tws.2021.108315
    [13] PENG Y, LI T, BAO C H, et al. Performance analysis and multi-objective optimization of bionic dendritic furcal energy-absorbing structures for trains [J]. International Journal of Mechanical Sciences, 2023, 246: 108145. doi: 10.1016/j.ijmecsci.2023.108145
    [14] WEI Z Q, XU X H. Numerical study on impact resistance of novel multilevel bionic thin-walled structures [J]. Journal of Materials Research and Technology, 2022, 16: 1770–1780. doi: 10.1016/j.jmrt.2021.12.105
    [15] FAN Z X, YE G Y, LI S, et al. Compression performance and failure mechanism of honeycomb structures fabricated with reinforced wood [J]. Structures, 2023, 48: 1868–1882. doi: 10.1016/j.istruc.2023.01.087
    [16] WANG S, LIU H T. Energy absorption performance of the auxetic arc-curved honeycomb with thickness and arc angle gradient based on additive manufacturing [J]. Materials Today Communications, 2023, 35: 105515. doi: 10.1016/j.mtcomm.2023.105515
    [17] CUI Z, QI J Q, TIE Y, et al. Research on the energy absorption properties of origami-based honeycombs [J]. Thin-Walled Structures, 2023, 184: 110520. doi: 10.1016/j.tws.2022.110520
    [18] WANG X J, JIA K C, LIU Y, et al. In-plane impact response of graded foam concrete-filled auxetic honeycombs [J]. Materials, 2023, 16(2): 745. doi: 10.3390/ma16020745
    [19] LU Q Y, QI D X, LI Y, et al. Impact energy absorption performances of ordinary and hierarchical chiral structures [J]. Thin-Walled Structures, 2019, 140: 495–505. doi: 10.1016/j.tws.2019.04.008
    [20] KARAKOÇ A, TACIROǦLU E. Effects of morphology and topology on the effective stiffness of chiral cellular materials in the transverse plane [J]. Advances in Materials Science and Engineering, 2016, 2016: 6534648. doi: 10.1155/2016/6534648
    [21] ZHANG Y, REN X, JIANG W, et al. In-plane compressive properties of assembled auxetic chiral honeycomb composed of slotted wave plate [J]. Materials & Design, 2022, 221: 110956. doi: 10.1016/j.matdes.2022.110956
    [22] QI D X, LU Q Y, HE C W, et al. Impact energy absorption of functionally graded chiral honeycomb structures [J]. Extreme Mechanics Letters, 2019, 32: 100568. doi: 10.1016/j.eml.2019.100568
    [23] LI K Y, ZHANG Y, SU L, et al. Crushing mechanics of anti-tetrachiral column [J]. Thin-Walled Structures, 2022, 175: 109253. doi: 10.1016/j.tws.2022.109253
    [24] GONG C, BAI Z H, LV J Y, et al. Crashworthiness analysis of bionic thin-walled tubes inspired by the evolution laws of plant stems [J]. Thin-Walled Structures, 2020, 157: 107081. doi: 10.1016/j.tws.2020.107081
    [25] ZHENG G, WU S Z, SUN G Y, et al. Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes [J]. International Journal of Mechanical Sciences, 2014, 87: 226–240. doi: 10.1016/j.ijmecsci.2014.06.002
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  58
  • PDF下载量:  28
出版历程
  • 收稿日期:  2023-02-16
  • 修回日期:  2023-03-24
  • 录用日期:  2023-04-03
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回