压装连接对加速度计层间信号粘连的影响

邱云潇 何丽灵 陈刚 吴昊 李继承

邱云潇, 何丽灵, 陈刚, 吴昊, 李继承. 压装连接对加速度计层间信号粘连的影响[J]. 高压物理学报, 2022, 36(4): 043401. doi: 10.11858/gywlxb.20220517
引用本文: 邱云潇, 何丽灵, 陈刚, 吴昊, 李继承. 压装连接对加速度计层间信号粘连的影响[J]. 高压物理学报, 2022, 36(4): 043401. doi: 10.11858/gywlxb.20220517
QIU Yunxiao, HE Liling, CHEN Gang, WU Hao, LI Jicheng. Influence of Pressed Connection on Accelerometer Signal Adhesion between Target Layers[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 043401. doi: 10.11858/gywlxb.20220517
Citation: QIU Yunxiao, HE Liling, CHEN Gang, WU Hao, LI Jicheng. Influence of Pressed Connection on Accelerometer Signal Adhesion between Target Layers[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 043401. doi: 10.11858/gywlxb.20220517

压装连接对加速度计层间信号粘连的影响

doi: 10.11858/gywlxb.20220517
基金项目: 中国工程物理研究院创新与发展基金(CX20210031)
详细信息
    作者简介:

    邱云潇(1992-),男,硕士研究生,主要从事冲击动力学研究. E-mail:625577030@qq.com

    通讯作者:

    何丽灵(1984-),女,博士,副研究员,主要从事冲击动力学研究. E-mail:heliling1984@139.com

  • 中图分类号: O385

Influence of Pressed Connection on Accelerometer Signal Adhesion between Target Layers

  • 摘要: 引信控制技术是战斗部研制的关键技术之一,层间加速度信号粘连可能导致计层引信错误决策。针对含压装连接加速度测量装置在弹体侵彻多层靶时信号粘连的问题,依托数值仿真获得了弹体结构动态响应。计算结果显示:无预紧压装时,装置与弹体的动态间隙最大可达25 μm,形成间隙碰撞,加剧层间信号粘连;适当预紧压装可抑制层间间隙,使压装连接与理想刚性连接近似。适当预紧压装时,层间加速度计过载频响呈现单峰特征,响应频率峰值与弹体一阶伸缩固有频率接近。存在最小预紧力,可使压装连接与理想刚性连接近似,其值随撞击速度、靶板层数增加而增大。这是因为在层间阶段弹体中留存的应力波的最大值随撞击速度、靶板层数增加而增大。研究结论为压装连接时加速度层间信号粘连的机理识别与控制奠定了基础,同时也可在一定程度上指导压装连接的工程装配。

     

  • 图  含加速度测试装置的试验弹[13]

    Figure  1.  Projectile containing accelerometer equipment[13]

    图  数值仿真模型

    Figure  2.  Finite element model for numerical simulation

    图  弹体运动学参数试验结果与数值仿真结果对比

    Figure  3.  Comparison of kinematic parameters of projectile obtained by experimental measurement and numerical simulation

    图  装置在弹体内安装的示意图

    Figure  4.  Schematic diagram of pressed connection between projectile and accelerometer equipment

    图  不同预紧安装时装置与弹仓间隙(δABδCD )的变化历程

    Figure  5.  Gaps of δAB and δCD versus the displacement of projectile with different preloads

    图  6种工况的整弹过载时域曲线

    Figure  6.  Time histories of deceleration of the whole projectile for 6 cases

    图  6种工况的加速度计及整弹的过载时域曲线

    Figure  7.  Time histories of deceleration of the accelerometer and whole projectile for 6 cases

    图  在理想刚性连接(工况1)与无预紧压装(工况2)时弹靶相互作用阶段加速度计过载频域曲线

    Figure  8.  Frequency response of deceleration of accelerometer for ideal rigid connection (Case 1) and pressed connection without preload (Case 2) during stage Ⅰ and stage Ⅲ

    图  理想刚性连接(工况1)与无预紧压装(工况2)时靶间及靶后飞行阶段加速度计过载的频域曲线

    Figure  9.  Frequency response of deceleration of accelerometer for ideal rigid connection (Case 1) and pressed connection without preload (Case 2) during stage Ⅱ and stage Ⅳ

    图  10  层间飞行时不同安装预紧下加速度计过载频域曲线

    Figure  10.  Frequency response of deceleration of accelerometer with different preloads between two slabs

    图  11  不同弹速下两种参考连接工况的加速度计过载时域曲线

    Figure  11.  Time histories of deceleration of accelerometer for two reference cases at different impact velocities

    图  12  预紧压装时不同速度下加速度计过载的时域曲线

    Figure  12.  Time histories of deceleration of accelerometer for pressed connection with different preloads at different impact velocities

    图  13  不同连接状态时不同着靶速度下加速度计层间过载信号的频域响应

    Figure  13.  Frequency response of deceleration of accelerometer between two slabs for different connection modes at different impact velocities

    图  14  以不同着靶速度穿越双层靶时弹体与装置典型位置的应力变化历程

    Figure  14.  Time histories of effctive stress for the elements in projectile and in accelerometer equipment during perforating two slabs at different initial impact velocities

    图  15  初速为600 m/s的弹体侵彻5层靶时加速度计和弹体刚体过载的时域曲线

    Figure  15.  Time histories of deceleration for accelerometer and projectile during perforating 5-layer target at an initial impact velocity of 600 m/s

    图  16  弹体初速为600 m/s时4种连接状态下层间加速度计过载频域响应

    Figure  16.  Frequency responses of the deceleration of accelerometer with 4 connection modes as a function of frequency during perforating two neighboring slabs at an initial impact velocity of 600 m/s

    图  17  弹体以600 m/s的初速穿过5层靶时弹体与装置典型位置的应力变化历程

    Figure  17.  Time histories of elements for projectile and accelerometer equipment during perforating five slabs at an initial impact velocity of 600 m/s

    表  1  弹体外壳、尾盖与测试装置外壳的材料参数[1415]

    Table  1.   Material parameters for shell and rear cover of projectile and shell of accelerometer equipment[1415]

    Materialρ/(kg·m−3)G/GPaνTm/Kcp/(J·kg−1·K−1)A/MPaB/MPa n
    TC4442841.90.311 87856010981092 0.93
    45CrNiMoV7800820.291 82346014101124 0.1954
    MaterialCmD1D2D3D4D5
    TC40.0141.1−0.090.270.480.0143.87
    45CrNiMoV0.0087860.5622
    下载: 导出CSV

    表  2  灌封材料参数[16]

    Table  2.   Material parameters for encapsulating compound[16]

    Materialρ/(kg·m−3)G/GPaνσy/MPaEtan/MPa${f{_{\rm{s} } }}$
    Epoxy resin11863.020.3779.7502.0
    下载: 导出CSV

    表  3  靶板材料参数[17]

    Table  3.   Material parameters for target[17]

    Materialρ/(kg·m−3)G/GPaabcNfc/MPaT/MPaEFMIN
    Concrete230013.670.791.60.0070.61413.60.01
    Smax/MPa pcrush/MPaUcrushplock/GPaUlockD1D2K1/GPaK2/GPaK3/GPa
    713.670.00810.80.10.04185−171208
    下载: 导出CSV

    表  4  弹体以597 m/s正侵彻的数值仿真工况设计

    Table  4.   Different conditions of numerical simulations for normal impact at projectile velocity of 597 m/s

    Case No.State depictionPreload force/kNGap/mmRemarks
    1Ideal rigid connectionδABδCD≡0Reference case
    2No preload0 δAB=δCD=0 before impactReference case
    3Preloaded1.0δAB=δCD=0 before impact
    4Preloaded2.2δAB=δCD=0 before impact
    5Preloaded5.3δAB=δCD=0 before impact
    6Preloaded10.3 δAB=δCD=0 before impact
    下载: 导出CSV

    表  5  理想刚性连接时弹体典型的固有频率及振型描述

    Table  5.   Eigen frequency and vibration modes of projectile with ideal rigid connection

    Case No.Eigen frequency/kHzVibration mode
    116.192Axial first-order stretching mode of projectile
    221.065Bulging mode of projectile shell
    325.606Coupled vibration mode of projectile and accelerometer equipment
    431.209Axial first-order stretching mode of accelerometer equipment
    533.042Bulging mode of accelerometer equipment
    下载: 导出CSV
  • [1] 任辉启, 何翔, 刘瑞朝, 等. 弹体侵彻混凝土过载特性研究 [J]. 土木工程学报, 2005, 38(1): 110–116. doi: 10.3321/j.issn:1000-131X.2005.01.015

    REN H Q, HE X, LIU R C, et al. A study on the overload characteristics of projectile penetrating concrete [J]. China Civil Engineering Journal, 2005, 38(1): 110–116. doi: 10.3321/j.issn:1000-131X.2005.01.015
    [2] 王杰, 李蓉, 黄惠东. 基于小波系数的粘连信号穿层特征提取方法 [J]. 探测与控制学报, 2016, 38(1): 13–17, 23.

    WANG J, LI R, HUANG H D. Layer penetrating adhesion signal characteristic extracting based on wavelet coefficients [J]. Journal of Detection & Control, 2016, 38(1): 13–17, 23.
    [3] 张海涛, 张康, 李朝阳, 等. 降低加速度信号粘连的传感器二次封装材料 [J]. 兵器装备工程学报, 2016, 37(7): 37–41, 73. doi: 10.11809/scbgxb2016.07.009

    ZHANG H T, ZHANG K, LI Z Y, et al. Secondary packaging materials to reduce the acceleration sensor signal blocking [J]. Journal of Ordnance Equipment Engineering, 2016, 37(7): 37–41, 73. doi: 10.11809/scbgxb2016.07.009
    [4] 应怀樵, 沈松, 刘进明. 频率混叠在时域和频域现象中的研究 [J]. 振动、测试与诊断, 2006, 26(1): 1–4. doi: 10.3969/j.issn.1004-6801.2006.01.001

    YING H Q, SHEN S, LIU J M. Study on frequency aliasing in time and frequency domains [J]. Journal of Vibration Measurement & Diagnosis, 2006, 26(1): 1–4. doi: 10.3969/j.issn.1004-6801.2006.01.001
    [5] 何丽灵, 高进忠, 陈小伟, 等. 弹体高过载硬回收测量技术的实验探讨 [J]. 爆炸与冲击, 2013, 33(6): 608–612. doi: 10.3969/j.issn.1001-1455.2013.06.008

    HE L L, GAO J Z, CHEN X W, et al. Experimental study on measurement technology for projectile deceleration [J]. Explosion and Shock Waves, 2013, 33(6): 608–612. doi: 10.3969/j.issn.1001-1455.2013.06.008
    [6] ZHANG D M, GAO S Q, NIU S H, et al. Study on collision of threaded connection during impact [J]. International Journal of Impact Engineering, 2017, 106: 133–145. doi: 10.1016/j.ijimpeng.2017.03.012
    [7] 李晓峰, 王亚斌, 吴碧. 侵彻弹药引信技术 [M]. 北京: 国防工业出版社, 2016.

    LI X F, WANG Y B, WU B. Fuze of penetration ammunition [M]. Beijing: National Defense Industry Press, 2016.
    [8] 宋英燕, 张京英, 李晓峰, 等. 两种连接结构动载荷传递特性的MATLAB仿真研究 [J]. 图学学报, 2013, 38(6): 809–813.

    SONG Y Y, ZHANG J Y, LI X F, et al. MATLAB simulation study on dynamic load transfer characteristics of two kinds of threaded connections [J]. Journal of Graphics, 2013, 38(6): 809–813.
    [9] FRANCO R J, PLATZBECKER M R. Miniature penetrator (MinPen) acceleration recorder development test [R]. Albuquerque: Sandia National Laboratories, 1998.
    [10] 电机工程手册编辑委员会. 机械工程手册(第5卷): 机械设计 [M]. 北京: 机械工业出版社, 1982.
    [11] 程祥利, 刘波, 赵慧, 等. 侵彻战斗部-引信系统动力学建模与仿真 [J]. 兵工学报, 2020, 41(4): 625–633. doi: 10.3969/j.issn.1000-1093.2020.04.001

    CHENG X L, LIU B, ZHAO H, et al. Dynamic modeling and simulation for penetration warhead-fuze system [J]. Acta Armamentarii, 2020, 41(4): 625–633. doi: 10.3969/j.issn.1000-1093.2020.04.001
    [12] 程祥利, 赵慧, 李林川, 等. 基于机械振动理论的垂直侵彻弹靶作用模型 [J]. 爆炸与冲击, 2019, 39(9): 101–110.

    CHENG X L, ZHAO H, LI L C, et al. Projectile target response model for normal penetration process based on mechanical vibration theory [J]. Explosion and Shock Waves, 2019, 39(9): 101–110.
    [13] WU H, FANG Q, PENG Y, et al. Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner [J]. International Journal of Impact Engineering, 2015, 76: 232–250. doi: 10.1016/j.ijimpeng.2014.10.010
    [14] HU X, XIE L J, GAO F N, et al. On the development of material constitutive model for 45CrNiMoVA ultra-high-strength steel [J]. Metals, 2019, 9(3): 374. doi: 10.3390/met9030374
    [15] WANG X M, SHI J. Validation of Johnson-Cook plasticity and damage model using impact experiment [J]. International Journal of Impact Engineering, 2013, 60: 67–75. doi: 10.1016/j.ijimpeng.2013.04.010
    [16] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020.
    [17] 方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法 [J]. 工程力学, 2014, 31(3): 197–204.

    FANG Q, KONG X Z, WU H, et al. Determination of Holmquist-Johnson-Cook constitutive model parameters of rock [J]. Engineering Mechanics, 2014, 31(3): 197–204.
    [18] 刘波, 杨黎明, 李东杰, 等. 侵彻弹体结构纵向振动频率特性分析 [J]. 爆炸与冲击, 2018, 38(3): 677–682.

    LIU B, YANG L M, LI D J, et al. Analysis of axial vibration frequency for projectile structure in penetration [J]. Explosion and Shock Waves, 2018, 38(3): 677–682.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  16
  • PDF下载量:  17
出版历程
  • 收稿日期:  2022-02-22
  • 修回日期:  2022-03-02
  • 录用日期:  2022-03-02
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回