热塑性纤维金属层合板舱内爆炸响应数值模拟

周沪 孔祥韶 刘芳 郑成

周沪, 孔祥韶, 刘芳, 郑成. 热塑性纤维金属层合板舱内爆炸响应数值模拟[J]. 高压物理学报, 2022, 36(1): 014205. doi: 10.11858/gywlxb.20210821
引用本文: 周沪, 孔祥韶, 刘芳, 郑成. 热塑性纤维金属层合板舱内爆炸响应数值模拟[J]. 高压物理学报, 2022, 36(1): 014205. doi: 10.11858/gywlxb.20210821
ZHOU Hu, KONG Xiangshao, LIU Fang, ZHENG Cheng. Numerical Analysis of Response of Fiber Reinforced Thermoplastic and Metal Laminates Subjected to Explosion in Cabin[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014205. doi: 10.11858/gywlxb.20210821
Citation: ZHOU Hu, KONG Xiangshao, LIU Fang, ZHENG Cheng. Numerical Analysis of Response of Fiber Reinforced Thermoplastic and Metal Laminates Subjected to Explosion in Cabin[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014205. doi: 10.11858/gywlxb.20210821

热塑性纤维金属层合板舱内爆炸响应数值模拟

doi: 10.11858/gywlxb.20210821
基金项目: 装备预先研究教育部联合基金青年人才项目(6141A02033108)
详细信息
    作者简介:

    周 沪(1994-),男,博士,主要从事结构动力学研究. E-mail:zhouhu@whut.edu.cn

    通讯作者:

    刘 芳(1984-),女,博士,副教授,主要从事材料弹塑性损伤本构关系、结构弹塑性损伤力学响应研究. E-mail:fang_liu@whut.edu.cn

  • 中图分类号: O347.3

Numerical Analysis of Response of Fiber Reinforced Thermoplastic and Metal Laminates Subjected to Explosion in Cabin

  • 摘要: 热塑性纤维金属层合板作为具备优良抗冲击潜能的复合材料,在舰船防护领域受到广泛关注。以热塑性纤维金属层合板为研究对象,基于封闭空间内爆炸载荷作用下层合板动态响应试验数据,以及通过代表体积元(representative volume element, RVE)方法计算得到的纤维板材料参数,开展了热塑性纤维增强金属层合板的数值模拟研究。通过试验结果与数值模拟结果的对比,验证了数值模拟方法的有效性,进一步分析了层合板的响应规律。所采用的热塑性纤维金属层合板舱内爆炸响应数值模拟方法对研究层合板抗冲击性能具有一定的借鉴意义,为相关研究的进一步开展提供了思路。

     

  • 图  热塑性纤维增强金属层合板铺层形式

    Figure  1.  Lay-up of fiber reinforced thermoplastic and metal laminate

    图  封闭箱体示意图

    Figure  2.  Schematic diagram of enclosed cabin

    图  试验过程中整体装置架设

    Figure  3.  Set-up of the tests

    图  截面典型破坏模式

    Figure  4.  Typical damage mode (sectional view)

    图  编织纤维布在不同尺度的构成关系

    Figure  5.  Structure of fiber reinforced thermoplastic metal laminates

    图  纤维布编织方法

    Figure  6.  Fiber of weaving method

    图  玻璃纤维截面

    Figure  7.  Cross section of glass fiber

    图  纤维束截面

    Figure  8.  Cross section of fiber yarn

    图  代表体积元模型

    Figure  9.  Representative volume element model

    图  10  二维载荷计算模型

    Figure  10.  Two-dimensional load calculation model

    图  11  二维起爆压力云图

    Figure  11.  Two-dimensional detonation pressure fringe

    图  12  整体模型设置

    Figure  12.  Overall model settings

    图  13  层合板部位模型剖视图

    Figure  13.  Sectional view of laminate model

    图  14  铝合金拉伸应力-应变曲线

    Figure  14.  Stress-strain curve of aluminum alloy

    图  15  夹持部分边界条件施加

    Figure  15.  Boundary conditions of the clamping part

    图  16  铝板与纤维板间的绑定

    Figure  16.  Bonding between the aluminum plate and laminate

    图  17  试验与数值模拟最终变形的对比

    Figure  17.  Comparison of final deformation between test and simulation

    图  18  面板变形模式

    Figure  18.  Deformation mode of the laminate

    图  19  固支边界范围

    Figure  19.  Range of fixed boundary

    图  20  纤维板损伤模式对比

    Figure  20.  Damage mode of laminate

    图  21  层合板截面变形与分层

    Figure  21.  Deformation and delamination of laminate (sectional view)

    图  22  典型层合板响应过程

    Figure  22.  Typical laminate response process

    表  1  试验工况

    Table  1.   Test conditions

    Specimen No.m/gd/mmW/gD/mmh/mm
    A5G4-11 1086.5 515.017.8
    A5G4-21 1086.51020.020.0
    A5G4-31 1086.52025.025.6
    A5G4-41 1086.53030.026.7
    A5G4-51 1086.54030.035.6
    A5G4-61 1086.55035.032.7
    下载: 导出CSV

    表  2  层合板试验变形数据

    Table  2.   Deformation of the laminate

    Specimen No.d/mmW/gδmax/mm
    A5G4-16.5 5 9.3
    A5G4-26.51013.5
    A5G4-36.52018.9
    A5G4-46.53026.2
    A5G4-56.54032.8
    A5G4-66.55039.7
    下载: 导出CSV

    表  3  药量递增下截面破坏形式变化

    Table  3.   Damage mode under different charge (sectional view)

    Specimen No.Cross-sectional scan imageDeformation characteristics
    A5G4-2Slight delamination occurred
    A5G4-3Initial damage began
    A5G4-4Fiber layers broken and failed, obvious delamination
    at the center and the boundary
    A5G4-5All fiber layers broken, delamination appears on
    each metal-fiber interface
    A5G4-6Metal layers has obvious protrusions and delamination
    下载: 导出CSV

    表  4  复合材料内部纤维的几何参数

    Table  4.   Fiber geometrical parameters of the laminate

    Weaving formFiber diameter/μmFiber bundle
    density/tex
    Long axis of fiber
    section/μm
    Short axis of fiber
    section/μm
    1/7 satin6.068110500
    下载: 导出CSV

    表  5  复合材料的组成及其力学性能参数

    Table  5.   Composition of the laminate and their mechanical parameters

    Material$\rho$f/(g∙cm−3)E/GPaμw/%
    E-glass fiber2.4571.000.260
    PP0.91 0.890.440
    下载: 导出CSV

    表  6  复合材料性能参数

    Table  6.   Mechanical parameters of the laminate

    E11/GPaE22/GPaE33/GPaG12/GPaG13/GPaG23/GPaμ12μ13μ32
    13.6013.603.120.780.820.820.050.540.12
    下载: 导出CSV

    表  7  二维载荷计算中的TNT参数

    Table  7.   TNT parameters for two-dimensional load calculation model

    CJ detonation parameters JWL state equation parameters
    $\,\rho$C/(g∙cm−3)DC-J/(m∙s−1)pC-J/GPaEC/(MJ∙m−3)A/GPaB/GPaR1R2$\omega $
    1.556 48718.395 235 373.773.754.150.900.35
    下载: 导出CSV

    表  8  铝合金真实应力-应变输入参数

    Table  8.   True stress-strain parameters of aluminum alloys

    Plastic strain/%Stress/MPa Plastic strain/%Stress/MPa Plastic strain/%Stress/MPa
    0110.93 4.137182.47 12.767241.73
    0.003111.12 5.028192.7313.778245.02
    0.188116.92 5.846200.5415.196250.26
    0.546124.20 6.727209.2616.371253.58
    0.958133.40 7.505214.3718.246258.65
    1.506143.87 8.356220.4118.662259.99
    2.058154.5210.237230.85
    3.090169.0711.604236.80
    下载: 导出CSV

    表  9  纤维板材料参数

    Table  9.   Mechanical parameters of fiber reinforced laminate

    Equation of state Strength equation
    E11/GPaE22/GPaE33/GPaμ12μ23μ31 G/MPa
    13.613.63.120.050.540.12 820
    Failure criterion Post-failure mode
    σ11/MPaσ22/MPaσ33/MPaτ12/MPaτ23/MPaτ31/MPa Residual shear stiffness
    550550550220220220 0.2
    下载: 导出CSV
    Directional failure mode
    112233122331
    11 only22 only33 only12 and 11 only23 and 11 only31 and 11 only
    下载: 导出CSV

    表  10  夹持边界与固支边界对比

    Table  10.   Comparison of clamping and fixed boundary

    Final deformation/mmFinal deformation of the
    clamping boundary/mm
    Final deformation of the
    fixed boundary/mm
    Boundary influence/%
    13.512.89.228.1
    下载: 导出CSV
  • [1] CARRILLO J G, CANTWELL W J. Mechanical properties of a novel fiber-metal laminate based on a polypropylene composite [J]. Mechanics of Materials, 2009, 41(7): 828–838. doi: 10.1016/j.mechmat.2009.03.002
    [2] VLOT A. Impact loading on fibre metal laminates [J]. International Journal of Impact Engineering, 1996, 18(3): 291–307. doi: 10.1016/0734-743X(96)89050-6
    [3] VLOT A, KRULL M. Impact damage resistance of various fibre metal laminates [J]. Journal de Physique Ⅳ, 1997, 7(C3): 1045–1050.
    [4] KIM H K, PARK E T, SONG W J, et al. Experimental and numerical investigation of the high-velocity impact resistance of fiber metal laminates and Al 6061-T6 by using electromagnetic launcher [J]. Journal of Mechanical Science and Technology, 2019, 33(3): 1219–1229. doi: 10.1007/s12206-019-0222-4
    [5] NAM H W, HWANG W, HAN K S. Stacking sequence design of fiber-metal laminate for maximum strength [J]. Journal of Composite Materials, 2001, 35(18): 1654–1683. doi: 10.1106/7NV4-5J5R-XIUJ-PVXT
    [6] MANIKANDAN P, CHAI G B. A layer-wise behavioral study of metal based interply hybrid composites under low velocity impact load [J]. Composite Structures, 2014, 117: 17–31. doi: 10.1016/j.compstruct.2014.06.010
    [7] ZHANG X, MA Q Y, DAI Y, et al. Effects of surface treatments and bonding types on the interfacial behavior of fiber metal laminate based on magnesium alloy [J]. Applied Surface Science, 2018, 427: 897–906. doi: 10.1016/j.apsusc.2017.09.024
    [8] MAJZOOBI G H, MORSHEDI H, FARHADI K. The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs [J]. Thin-Walled Structures, 2018, 122: 1–7. doi: 10.1016/j.tws.2017.10.006
    [9] PÄRNÄNEN T, ALDERLIESTEN R, RANS C, et al. Applicability of AZ31B-H24 magnesium in fibre metal laminates-an experimental impact research [J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(9): 1578–1586. doi: 10.1016/j.compositesa.2012.04.008
    [10] CORTES P, CATWELL W J. The impact properties of high-temperature fiber-metal laminates [J]. Journal of Composite Materials, 2007, 41(5): 613–632. doi: 10.1177/0021998306065291
    [11] ZHANG D L, ZHANG X Y, LUO Y P, et al. Experimental study on drop-weight impact response of basalt fiber aluminum laminates (BFMLs) [J]. Advances in Materials Science and Engineering, 2018: 1478951.
    [12] SEYED YAGHOUBI A, LIAW B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: experimental and numerical studies [J]. Composite Structures, 2012, 94(8): 2585–2598. doi: 10.1016/j.compstruct.2012.03.004
    [13] SEYED YAGHOUBI A, LIAW B. Experimental and numerical investigations of stacking sequence effect on glare 5 fml plates subjected to ballistic impact [C]//2012 International Mechanical Engineering Congress and Exposition. Houston, Texas: American Society of Mechanical Engineers, 2012.
    [14] SEYED YAGHOUBI A, LIAW B. Effect of lay-up orientation on ballistic impact behaviors of GLARE 5 FML beams [J]. International Journal of Impact Engineering, 2013, 54: 138–148. doi: 10.1016/j.ijimpeng.2012.10.007
    [15] SEYED YAGHOUBI A, LIAW B. An experimental and numerical investigation of thickness effect on cross-ply glare 5 fml plates subjected to ballistic impact [C]//2012 International Mechanical Engineering Congress and Exposition. Houston, Texas: American Society of Mechanical Engineers, 2012.
    [16] SEYED YAGHOUBI A, LIAW B. Influences of thickness and stacking sequence on ballistic impact behaviors of GLARE 5 FML plates: part Ⅱ –numerical studies [J]. Journal of Composite Materials, 2014, 48(19): 2363–2374. doi: 10.1177/0021998313498104
    [17] SEYED YAGHOUBI A, LIAW B. Influences of thickness and stacking sequence on ballistic impact behaviors of GLARE 5 FML plates: part Ⅰ –experimental studies [J]. Journal of Composite Materials, 2014, 48(16): 2011–2021. doi: 10.1177/0021998313494097
    [18] SONG S H, KU T W, KIM J, et al. Investigation on the equivalent material property of carbon reinforced aluminum laminates [J]. International Journal of Modern Physics B, 2008, 22(31/32): 6149–6154.
    [19] GONZALEZ-CANCHE N G, FLORES-JOHNSON E A, CARRILLO J G. Mechanical characterization of fiber metal laminate based on aramid fiber reinforced polypropylene [J]. Composite Structures, 2017, 172: 259–266. doi: 10.1016/j.compstruct.2017.02.100
    [20] REYES V G, CANTWELL W J. The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene [J]. Composites Science and Technology, 2000, 60(7): 1085–1094. doi: 10.1016/S0266-3538(00)00002-6
    [21] SANTIAGO R C, CANTWELL W J, JONES N, et al. The modelling of impact loading on thermoplastic fibre-metal laminates [J]. Composite Structures, 2018, 189: 228–238. doi: 10.1016/j.compstruct.2018.01.052
    [22] EDRI I, SAVIR Z, FELDGUN V, et al. On blast pressure analysis due to a partially confined explosion: Ⅰ . experimental studies [J]. International Journal of Protective Structures, 2011, 2(1): 1–20. doi: 10.1260/2041-4196.2.1.1
    [23] HU Y, WU C Q, LUKASZEWICZ M, et al. Characteristics of confined blast loading in unvented structures [J]. International Journal of Protective Structures, 2011, 2(1): 21–44. doi: 10.1260/2041-4196.2.1.21
    [24] 孔祥韶, 徐敬博, 徐维铮. 舱室密闭空间中爆炸载荷后燃烧效应数值计算研究 [J]. 兵工学报, 2019, 40(4): 130–137.

    KONG X S, XU J B, XU W Z. Numerical study of influence of afterburning effect on blast load in confined cabin [J]. Acta Armamentarii, 2019, 40(4): 130–137.
    [25] FAN J Y, GUAN Z W, CANTWELL W J. Structural behaviour of fibre metal laminates subjected to a low velocity impact [J]. Science China: Physics Mechanics and Astronomy, 2011, 54(6): 1168–1177.
    [26] VLOT A. Impact properties of fiber metal laminates [J]. Composites Engineering, 1993, 3(10): 911–927. doi: 10.1016/0961-9526(93)90001-Z
    [27] SEYED YAGHOUBI A, LIU Y, LIAW B. Low-velocity impact on GLARE 5 fiber-metal laminates: influences of specimen thickness and impactor mass [J]. Journal of Aerospace Engineering, 2012, 25(3): 409–420. doi: 10.1061/(ASCE)AS.1943-5525.0000134
    [28] SITNIKOVA E, GUAN Z W, CANTWELL W J. The analysis of the ultimate blast failure modes in fibre metal laminates [J]. Composites Science and Technology, 2016, 135: 1–12.
    [29] VO T P, GUAN Z W, CANTWELL W J, et al. Modelling of the low-impulse blast behaviour of fibre-metal laminates based on different aluminium alloys [J]. Composites Part B: Engineering, 2013, 44(1): 141–151. doi: 10.1016/j.compositesb.2012.06.013
    [30] VO T P, GUAN Z W, CANTWELL W J, et al. Low-impulse blast behaviour of fibre-metal laminates [J]. Composite Structures, 2012, 94(3): 954–965. doi: 10.1016/j.compstruct.2011.10.027
  • 加载中
图(22) / 表(11)
计量
  • 文章访问数:  662
  • HTML全文浏览量:  492
  • PDF下载量:  31
出版历程
  • 收稿日期:  2021-06-18
  • 修回日期:  2021-09-04
  • 录用日期:  2021-11-25

目录

    /

    返回文章
    返回