泡沫增强复合材料点阵夹芯梁抗冲击性能

王春国 文安松 范子豪 黄威

王春国, 文安松, 范子豪, 黄威. 泡沫增强复合材料点阵夹芯梁抗冲击性能[J]. 高压物理学报, 2022, 36(1): 014201. doi: 10.11858/gywlxb.20210807
引用本文: 王春国, 文安松, 范子豪, 黄威. 泡沫增强复合材料点阵夹芯梁抗冲击性能[J]. 高压物理学报, 2022, 36(1): 014201. doi: 10.11858/gywlxb.20210807
WANG Chunguo, WEN Ansong, FAN Zihao, HUANG Wei. Dynamic Failure of Foam-Reinforce Composite Lattice Sandwich Beam to Local Impulsive Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014201. doi: 10.11858/gywlxb.20210807
Citation: WANG Chunguo, WEN Ansong, FAN Zihao, HUANG Wei. Dynamic Failure of Foam-Reinforce Composite Lattice Sandwich Beam to Local Impulsive Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014201. doi: 10.11858/gywlxb.20210807

泡沫增强复合材料点阵夹芯梁抗冲击性能

doi: 10.11858/gywlxb.20210807
基金项目: 国家自然科学基金(11802100)
详细信息
    作者简介:

    王春国(1978-),男,硕士,主要从事船舶与海洋工程结构物研究. E-mail:wangcg@gmail.com

    通讯作者:

    黄 威(1987-),男,博士,讲师,主要从事冲击动力学研究. E-mail:weihuang@hust.edu.cn

  • 中图分类号: O347

Dynamic Failure of Foam-Reinforce Composite Lattice Sandwich Beam to Local Impulsive Load

  • 摘要: 基于考虑分层失效和渐进损伤的三维Hashin失效准则,对复合材料点阵夹芯梁结构及其泡沫增强夹芯结构开展了局部冲击加载下的数值模拟分析,研究了冲击强度及泡沫增强效应对复合材料点阵夹芯梁结构抗冲击性能的影响。通过与实验的对比分析,验证了数值模型的有效性。结果显示,冲击强度的变化对结构的动态响应、失效模式及能量耗散形式都有明显的影响。泡沫增强效应使结构的横向变形响应速度降低,并且随着冲击强度的增加尤为敏感。泡沫芯材的压缩和开裂失效使得结构保持良好的完整性和更低的损伤程度,有效地降低了其他组分的能量吸收比,表明泡沫填充有效地提升了复合材料点阵梁结构在局部冲击载荷作用下的防护效能。

     

  • 图  冲击加载实验装置和复合材料点阵结构及其单胞尺寸

    Figure  1.  Sketch of the experimental setup and dimensions of the lattice cell

    图  泡沫弹冲击加载有限元模型

    Figure  2.  Numerical model of the aluminum foam impact test

    图  复合材料点阵夹芯结构动态变形实验与模拟结果对比(v0 = 140.8 m/s)

    Figure  3.  Comparison of dynamic deformation of the experiment and simulation of the composite lattice sandwich beam (v0 = 140.8 m/s)

    图  泡沫增强复合材料点阵夹芯结构动态变形实验与模拟结果对比(v0 = 139.2 m/s)

    Figure  4.  Comparison of dynamic deformation of the experiment and simulation of the foam reinforced composite lattice sandwich beam (v0 = 139.2 m/s)

    图  背板中点动态变形对比

    Figure  5.  Comparison of midspan dynamic deformation between the experiment and simulation

    图  低速冲击下复合材料点阵夹芯梁的失效模式对比

    Figure  6.  Comparison of failure modes of the composite lattice sandwich beam under low-veloctiy impact

    图  高速冲击下复合材料点阵夹芯梁的失效模式对比

    Figure  7.  Comparison of failure modes of the composite lattice sandwich beam under high-veloctiy impact

    图  复合材料夹芯结构梁在不同冲击强度下各组分的吸能比

    Figure  8.  Energy absorption of different components of the composite lattice sandwich beam under different impact conditions

    表  1  T700碳纤维/环氧单向预浸料的材料属性

    Table  1.   Material properties of T700 carbon/epoxy prepregs

    E11/MPa E22/MPaE33/MPaν12 ν13 ν23G12/MPa
    100 8 8 0.21 0.21 0.30 4
    G13/MPa G23/MPaXt/MPa Xc/MPa Yt/MPaYc/MPaZt/MPa
    4 3 2100 700 42 160 42
    Zc/MPaS12/MPa S13/MPa S23/MPa$\,\rho $/(kg·m3)
    160 104 104 86 1500
    下载: 导出CSV

    表  2  撞击初始条件及无量纲冲击强度

    Table  2.   Initial conditions and non-dimensional impulse of the impacts

    SampleExp. No.mp/gv0/(m·s1)$ \overline I $ SampleExp. No.mp/gv0/(m·s1)$ \overline I $
    Lattice
    sandwich
    LS-129.8 50.60.25 Lattice/foam
    sandwich
    LS/F-130.3 52.20.26
    LS-228.8 77.50.36LS/F-229.1 80.50.38
    LS-329.7140.80.68LS/F-329.2139.20.66
    LS-427.9175.40.80LS/F-430.6167.60.83
    LS-529.9204.10.99LS/F-528.9209.40.99
    下载: 导出CSV
  • [1] 熊健, 杜昀桐, 杨雯, 等. 轻质复合材料夹芯结构设计及力学性能最新进展 [J]. 宇航学报, 2020, 41(6): 749–760.

    XIONG J, DU Y T, YANG W, et al. Research progress on design and mechanical properties of lightweight composite sandwich structures [J]. Journal of Astronautics, 2020, 41(6): 749–760.
    [2] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. doi: 10.1115/1.1629109
    [3] FLECK N A, DESHPANDE V S, ASHBY M F. Micro-architectured materials: past, present and future [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 466(2121): 2495–2516.
    [4] YANG J S, MA L, CHAVES-VARGAS M, et al. Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels [J]. Composites Science and Technology, 2017, 147(28): 89–99.
    [5] XIONG J, MA L, VAZIRI A, et al. Mechanical behavior of carbon fiber composite lattice core sandwich panels fabricated by laser cutting [J]. Acta Materialia, 2012, 60(13/14): 5322–5334. doi: 10.1016/j.actamat.2012.06.004
    [6] MEI J, LIU J, LIU J. A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel [J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 28–39. doi: 10.1016/j.compositesa.2017.07.020
    [7] MEI J, TAN P J, LIU J, et al. Moisture absorption characteristics and mechanical degradation of composite lattice truss core sandwich panel in a hygrothermal environment [J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105647. doi: 10.1016/j.compositesa.2019.105647
    [8] XU G D, ZHAI J J, TA Z, et al. Response of composite sandwich beams with graded lattice core [J]. Composite Structures, 2015, 119: 666–676. doi: 10.1016/j.compstruct.2014.09.042
    [9] ZHANG J, YE Y, QIN Q, et al. Low-velocity impact of sandwich beams with fibre-metal laminate face-sheets [J]. Composites Science and Technology, 2018, 168(10): 152–159.
    [10] ZHANG J, QIN Q, XIANG C, et al. A theoretical study of low-velocity impact of geometrically asymmetric sandwich beams [J]. International Journal of Impact Engineering, 2016, 96: 35–49. doi: 10.1016/j.ijimpeng.2016.05.011
    [11] ZHANG J, QIN Q, XIANG C, et al. Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact [J]. Composite Structures, 2016, 153: 614–623. doi: 10.1016/j.compstruct.2016.06.059
    [12] ZHANG G, MA L, WANG B, et al. Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores [J]. Composites Part B: Engineering, 2012, 43(2): 471–476. doi: 10.1016/j.compositesb.2011.11.017
    [13] ZHANG G, WANG B, MA L, et al. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels [J]. Composite Structures, 2014, 108: 304–310. doi: 10.1016/j.compstruct.2013.09.040
    [14] HUANG W, FAN Z, ZHANG W, et al. Impulsive response of composite sandwich structure with tetrahedral truss core [J]. Composites Science and Technology, 2019, 176: 17–28. doi: 10.1016/j.compscitech.2019.03.020
    [15] HUANG C, LEE Y. Quasi-static simulation of composite-laminated shells subjected to low-velocity impact [J]. Journal of Reinforced Plastics and Composites, 2005, 24(7): 763–774. doi: 10.1177/0731684405046613
    [16] XIAO J R, GAAM B A, GILLESPIE J W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading [J]. Composite Structures, 2007, 78(2): 182–196. doi: 10.1016/j.compstruct.2005.09.001
    [17] DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253–1283.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  806
  • HTML全文浏览量:  575
  • PDF下载量:  44
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-06-18

目录

    /

    返回文章
    返回