6H型六方钙钛矿相BaGeO3的高温高压合成

谢亚飞 姜昌国 罗兴丽 谭大勇 肖万生

谢亚飞, 姜昌国, 罗兴丽, 谭大勇, 肖万生. 6H型六方钙钛矿相BaGeO3的高温高压合成[J]. 高压物理学报, 2021, 35(5): 051201. doi: 10.11858/gywlxb.20210761
引用本文: 谢亚飞, 姜昌国, 罗兴丽, 谭大勇, 肖万生. 6H型六方钙钛矿相BaGeO3的高温高压合成[J]. 高压物理学报, 2021, 35(5): 051201. doi: 10.11858/gywlxb.20210761
XIE Yafei, JIANG Changguo, LUO Xingli, TAN Dayong, XIAO Wansheng. Synthesis of 6H-Type Hexagonal Perovskite Phase of BaGeO3 at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 051201. doi: 10.11858/gywlxb.20210761
Citation: XIE Yafei, JIANG Changguo, LUO Xingli, TAN Dayong, XIAO Wansheng. Synthesis of 6H-Type Hexagonal Perovskite Phase of BaGeO3 at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 051201. doi: 10.11858/gywlxb.20210761

6H型六方钙钛矿相BaGeO3的高温高压合成

doi: 10.11858/gywlxb.20210761
基金项目: 国家自然科学基金(41572030,41372047);中国科学院战略性先导科技专项(B类)(XDB18010403)
详细信息
    作者简介:

    谢亚飞(1996-),男,硕士研究生,主要从事高压矿物学研究. E-mail:xieyafei@gig.ac.cn

    通讯作者:

    肖万生(1968-),男,博士,研究员,主要从事高压矿物学研究. E-mail:wsxiao@gig.ac.cn

  • 中图分类号: O521.2; P311.9

Synthesis of 6H-Type Hexagonal Perovskite Phase of BaGeO3 at High Temperature and High Pressure

  • 摘要: 利用金刚石对顶砧高压装置,结合显微激光双面加热技术,对BaGeO3开展了高温高压实验研究。常温常压下赝硅灰石相的BaGeO3于12 GPa左右开始非晶化。进一步加压到22 GPa并对已完全非晶化的BaGeO3样品进行(1800 ± 200) K的高温处理,拉曼光谱显示其转变成一种未见报道的高压新相。在0~17.4 GPa压力范围对BaGeO3高压新相开展同步辐射X射线衍射测试,其衍射谱可以用6H型六方钙钛矿相进行指标化,并且卸压到常压时仍保持稳定。以6H型钙钛矿相为结构模型,分别对17.4 GPa和常压下的X射线衍射谱进行Rietveld结构精修,获得其结构参数。应用二阶Birch-Murnaghan状态方程拟合实验体积-压力数据,得到其体弹模量K0 = 150(2) GPa和零压晶胞体积V0 = 373.0(3) Å3。在实验研究的基础上,对6H型钙钛矿相BaGeO3进行第一性原理理论计算,所得不同压力下的晶格常数和体积数据与实验结果符合得很好,状态方程参数K0 = 153(1) GPa,V0 = 374.2(1) Å3。20.0 GPa时计算的拉曼光谱也很好地描述了拉曼实验测量结果。研究结果补充了赝硅灰石相BaGeO3在更高温压条件下的结构相转变。6H型钙钛矿相BaGeO3的获得为进一步表征该相的物理化学性质奠定了基础,为开发高性能钙钛矿结构锗酸盐材料提供了可能性,同时对于理解硅酸盐钙钛矿结构的相变规律及稳定性、地球下地幔物理化学性质及其变化等具有重要的指示意义。

     

  • 图  赝硅灰石结构(a)和6H型六方钙钛矿结构(b)示意图(大绿球、中紫球、小红球分别代表Ba、Ge、O原子)

    Figure  1.  Schematic of pseudowollastonite structure (a) and hexagonal perovskite (6H-type) structure (b) (Ba, Ge, O atoms are shown as big green, medium purple, small red spheres, respectively.)

    图  BaGeO3高压新相合成过程中代表性拉曼光谱与计算拉曼光谱

    Figure  2.  Representative Raman spectra and calculated Raman spectra in the synthesis process of new high pressure phase BaGeO3

    图  6H型六方钙钛矿相BaGeO3在卸压过程中的代表性XRD谱

    Figure  3.  Representative XRD patterns of hexagonal perovskite phase BaGeO3 (6H-type) on decompression

    图  6H型六方钙钛矿相BaGeO3在常压和17.4 GPa的Rietveld结构精修图

    Figure  4.  Rietveld refinement XRD patterns of hexagonal perovskite phase BaGeO3 (6H-type) at ambient pressure and 17.4 GPa

    图  6H型六方钙钛矿相BaGeO3的晶面间距和晶轴与压力的关系

    Figure  5.  Pressure dependence of d-spacing, a-axis and c-axis of hexagonal perovskite phase BaGeO3 (6H-type)

    图  实验和计算得到的6H型六方钙钛矿相BaGeO3的体积-压力关系

    Figure  6.  Experimental and calculated p-V relationship of hexagonal perovskite phase BaGeO3 (6H-type)

    表  1  6H型六方钙钛矿相BaGeO3在常压和17.4 GPa的结构参数

    Table  1.   Structural parameters of hexagonal perovskite phase BaGeO3 (6H-type) at ambient pressure and 17.4 GPa

    Structural parameters at 17.4 GPaStructural parameters at 0.1 MPa
    AtomSitexyzAtomSitexyz
    Ba12b000.2500 Ba12b000.2500
    Ba24f0.3333 0.6667 0.0896(5)Ba24f0.3333 0.6667 0.0930(5)
    Ge12a000Ge12a000
    Ge24f0.3333 0.6667 0.8392(5)Ge24f0.3333 0.6667 0.8427(5)
    O16h0.5178(27)0.0360(5)0.2500 O16h0.4976(23)−0.0050(5)0.2500
    O212k0.8342(27)0.6680(5)0.0730(5)O212k0.8140(23)0.6280 0.0765
    Bond lengths at 17.4 GPa/ÅBond lengths at 0.1 MPa/Å
    Ge1―O2Ge2―O2Ge2―O1Ge1―O2Ge2―O2Ge2―O1
    1.837(19) × 61.961(16) × 31.835(17) × 32.088(17) × 61.808(14) × 32.075(15) × 3
      Note: Numbers in parentheses indicate standard deviation.
    下载: 导出CSV

    表  2  计算得到的6H型六方钙钛矿相BaGeO3在20.0 GPa下的拉曼振动模

    Table  2.   Calculated Raman vibrational modes of hexagonal perovskite phase BaGeO3 (6H-type) at 20.0 GPa cm−1

    E2gE1gA1gE2gE1gE2gE2gE1gA1gE1g
    88131142158202213242264381395
    E2gE2gE1gA1gE2gE2gE1gA1gA1g
    399429431444529576578698840
    下载: 导出CSV
  • [1] MIZOGUCHI H, KAMIYA T, MATSUISHI S, et al. A germanate transparent conductive oxide [J]. Nature Communications, 2011, 2: 470. doi: 10.1038/NCOMMS1484
    [2] HORIUCHI H, ITO E, WEIDNER D J. Perovskite-type MgSiO3: single-crystal X-ray diffraction study [J]. American Mineralogist, 1987, 72(3/4): 357–360.
    [3] MAO H K, CHEN L C, HEMLEY R J, et al. Stability and equation of state of CaSiO3-perovskite to 134 GPa [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B12): 17889–17894. doi: 10.1029/JB094iB12p17889
    [4] XIAO W S, TAN D Y, ZHOU W, et al. A new cubic perovskite in PbGeO3 at high pressures [J]. American Mineralogist, 2012, 97(7): 1193–1198. doi: 10.2138/am.2012.4021
    [5] XIAO W S, TAN D Y, ZHOU W, et al. Cubic perovskite polymorph of strontium metasilicate at high pressures [J]. American Mineralogist, 2013, 98(11/12): 2096–2104. doi: 10.2138/am.2013.4470
    [6] GIBBS G V, BOISEN M B, HILL F C, et al. SiO and GeO bonded interactions as inferred from the bond critical point properties of electron density distributions [J]. Physics and Chemistry of Minerals, 1998, 25(8): 574–584. doi: 10.1007/s002690050150
    [7] AKAOGI M, KOJITANI H, YUSA H, et al. High-pressure transitions and thermochemistry of MGeO3 (M = Mg, Zn and Sr) and Sr-silicates: systematics in enthalpies of formation of A2+B4+O3 perovskites [J]. Physics and Chemistry of Minerals, 2005, 32(8/9): 603–613. doi: 10.1007/s00269-005-0034-1
    [8] NAKATSUKA A, ARIMA H, OHTAKA O, et al. Crystal structure of SrGeO3 in the high-pressure perovskite-type phase [J]. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71(5): 502–504. doi: 10.1107/S2056989015007264
    [9] ROSS N L, ANGEL R J. Compression of CaTiO3 and CaGeO3 perovskites [J]. American Mineralogist, 1999, 84(3): 277–281. doi: 10.2138/am-1999-0309
    [10] RUNGE C E, KUBO A, KIEFER B, et al. Equation of state of MgGeO3 perovskite to 65 GPa: comparison with the post-perovskite phase [J]. Physics and Chemistry of Minerals, 2006, 33(10): 699–709. doi: 10.1007/s00269-006-0116-8
    [11] YUSA H, AKAOGI M, SATA N, et al. Letter: unquenchable hexagonal perovskite in high-pressure polymorphs of strontium silicates [J]. American Mineralogist, 2005, 90(5/6): 1017–1020. doi: 10.2138/am.2005.1835
    [12] YUSA H, SATA N, OHISHI Y. Rhombohedral (9R) and hexagonal (6H) perovskites in barium silicates under high pressure [J]. American Mineralogist, 2007, 92(4): 648–654. doi: 10.2138/am.2007.2314
    [13] HIRAMATSU H, YUSA H, IGARASHI R, et al. An exceptionally narrow band-gap (~4 eV) silicate predicted in the cubic perovskite structure: BaSiO3 [J]. Inorganic Chemistry, 2017, 56(17): 10535–10542. doi: 10.1021/acs.inorgchem.7b01510
    [14] YANG H X, PREWITT C T. Crystal structure and compressibility of a two-layer polytype of pseudowollastonite (CaSiO3) [J]. American Mineralogist, 1999, 84(11/12): 1902–1905. doi: 10.2138/am-1999-11-1217
    [15] NISHI F. Strontium metagermanate, SrGeO3 [J]. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53(4): 399–401. doi: 10.1107/S0108270196013960
    [16] WAN S M, ZENG Y, YAO Y N, et al. BaGeO3: a mid-IR transparent crystal with superstrong raman response [J]. Inorganic Chemistry, 2020, 59(6): 3542–3545. doi: 10.1021/acs.inorgchem.0c00155
    [17] GSPAN C, KAHLENBERG V, KOTHLEITNER G, et al. Atomic and domain structure of the low-temperature phase of barium metagermanate (BaGeO3) [J]. Acta Crystallographica Section A: Foundations of Crystallography, 2006, 62(6): 1002–1009. doi: 10.1107/S0108768106039140
    [18] SHIMIZU Y, SYONO Y, AKIMOTO S. High-pressure transformations in SrGeO3, SrSiO3, BaGeO3, and BaSiO3 [J]. High Temperatures-High Pressures, 1970, 2(1): 113–120.
    [19] OZIMA M, SUSAKI J I, AKIMOTO S I, et al. The system BaO-GeO2 at high pressures and temperatures, with special reference to high-pressure transformations in BaGeO3, BaGe2O5, and Ba2Ge5O12 [J]. Journal of Solid State Chemistry, 1982, 44(3): 307–317. doi: 10.1016/0022-4596(82)90378-4
    [20] GASPARIK T, WOLF K, SMITH C M. Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa [J]. American Mineralogist, 1994, 79(11/12): 1219–1222.
    [21] AKAOGI M, YANO M, TEJIMA Y, et al. High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5-CaTiSiO5 system [J]. Physics of the Earth and Planetary Interiors, 2004, 143/144: 145–156. doi: 10.1016/j.pepi.2003.08.008
    [22] KATZ L, WARD R. Structure relations in mixed metal oxides [J]. Inorganic Chemistry, 1964, 3(2): 205–211. doi: 10.1021/ic50012a013
    [23] CHENG J G, ALONSO J A, SUARD E, et al. A new perovskite polytype in the high-pressure sequence of BaIrO3 [J]. Journal of the American Chemical Society, 2009, 131(21): 7461–7469. doi: 10.1021/ja901829e
    [24] SASAKI S, PREWITT C T, LIEBERMANN R C. The crystal structure of CaGeO3 perovskite and the crystal chemistry of the GdFeO3-type perovskites [J]. American Mineralogist, 1983, 68(11/12): 1189–1198.
    [25] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A: Foundations and Advances, 1976, 32(5): 751–767. doi: 10.1107/S0567739476001551
    [26] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [27] HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan [J]. High Pressure Research, 1996, 14(4/6): 235–248. doi: 10.1080/08957959608201408
    [28] HOLLAND T J B, REDFERN S A T. Unit cell refinement from powder diffraction data: the use of regression diagnostics [J]. Mineralogical Magazine, 1997, 61(404): 65–77. doi: 10.1180/MINMAG.1997.061.404.07
    [29] TOBY B H, VON DREELE R B. GSAS-Ⅱ: the genesis of a modern open-source all purpose crystallography software package [J]. Journal of Applied Crystallography, 2013, 46(2): 544–549. doi: 10.1107/S0021889813003531
    [30] GONZALEZ-PLATAS J, ALVARO M, NESTOLA F, et al. EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching [J]. Journal of Applied Crystallography, 2016, 49(4): 1377–1382. doi: 10.1107/S1600576716008050
    [31] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [32] LIN C C, SHEN P Y. Pressure-induced metastable phase transformations of calcium metasilicate (CaSiO3): a Raman spectroscopic study [J]. Materials Chemistry and Physics, 2016, 182: 508–519. doi: 10.1016/j.matchemphys.2016.07.065
    [33] KRONBO C H, MENESCARDI F, CERESOLI D, et al. High pressure structure studies of three SrGeO3 polymorphs: amorphization under pressure [J]. Journal of Alloys and Compounds, 2021, 855: 157419. doi: 10.1016/j.jallcom.2020.157419
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  2008
  • HTML全文浏览量:  934
  • PDF下载量:  59
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-04-14

目录

    /

    返回文章
    返回