气相爆轰反应中纳米TiO2颗粒的动态收集及微观生长机制

赵铁军 王自法 闫鸿浩 王小红 李晓杰

赵铁军, 王自法, 闫鸿浩, 王小红, 李晓杰. 气相爆轰反应中纳米TiO2颗粒的动态收集及微观生长机制[J]. 高压物理学报, 2021, 35(5): 053201. doi: 10.11858/gywlxb.20210746
引用本文: 赵铁军, 王自法, 闫鸿浩, 王小红, 李晓杰. 气相爆轰反应中纳米TiO2颗粒的动态收集及微观生长机制[J]. 高压物理学报, 2021, 35(5): 053201. doi: 10.11858/gywlxb.20210746
ZHAO Tiejun, WANG Zifa, YAN Honghao, WANG Xiaohong, LI Xiaojie. Dynamic Collection and Micro-Growth Mechanism of TiO2 Nanoparticles in Gaseous Detonation Reaction[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 053201. doi: 10.11858/gywlxb.20210746
Citation: ZHAO Tiejun, WANG Zifa, YAN Honghao, WANG Xiaohong, LI Xiaojie. Dynamic Collection and Micro-Growth Mechanism of TiO2 Nanoparticles in Gaseous Detonation Reaction[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 053201. doi: 10.11858/gywlxb.20210746

气相爆轰反应中纳米TiO2颗粒的动态收集及微观生长机制

doi: 10.11858/gywlxb.20210746
基金项目: 国家自然科学基金(11672068)
详细信息
    作者简介:

    赵铁军(1990-),男,博士,讲师,主要从事爆炸加工及电磁吸波研究. E-mail:tiejun_zhao@henu.edu.cn

    通讯作者:

    王自法(1965-),男,博士,教授,主要从事地震损伤及大数据分析研究. E-mail:zf_wang@henu.edu.cn

    闫鸿浩(1974-),男,博士,教授,主要从事爆炸加工及工程爆破理论研究. E-mail:yanhh@dlut.edu.cn

  • 中图分类号: O389

Dynamic Collection and Micro-Growth Mechanism of TiO2 Nanoparticles in Gaseous Detonation Reaction

  • 摘要: 在气相爆轰制备纳米TiO2实验中,将设计的可移动纳米粉体收集网台内置于爆轰管内,收集到了爆轰反应过程中生成的纳米TiO2,首次采用实验的方法探讨了气相爆轰制备纳米颗粒的生长机制。经分析发现,网台上与爆轰管壁收集的粉体为金红石相与锐钛矿相TiO2,且网台上TiO2的粒径明显小于管壁上收集的TiO2粒径。网台到爆轰管尾端的距离对颗粒尺寸影响非常显著,距离越近,纳米TiO2的粒径越小。结合爆轰波/冲击波在爆轰管中的传播规律,基于实验观察,进一步揭示了气相爆轰合成纳米颗粒的生长机制。

     

  • 图  气相爆轰管示意图

    Figure  1.  Schematic diagram of gaseous detonation tube

    图  纳米材料收集装置示意图

    Figure  2.  Schematic diagram of nano-material collection device

    图  爆轰管内收集的纳米粉体的XRD谱

    Figure  3.  XRD pattern of nano powders collected from gaseous detonation tube

    图  气相爆轰制备的纳米粉体的TEM图像:(a)显示了无可移动收集网台时气相爆轰管收集的纳米颗粒,(b)、(c)、(d)分别显示了可移动收集网台距爆轰管尾端160、320和640 mm时收集的纳米颗粒

    Figure  4.  TEM images of nano powders prepared by gaseous detonation: (a) Nano powders collected from gaseous detonation tube without collection device; (b), (c), (d) Nano powders on the removable nano powder collection platform at 160, 320, 640 mm away from the end of gaseous detonation tube

    图  氢-氧爆轰反应的高速摄影图像

    Figure  5.  Photos on the hydrogen-oxygen detonation reaction by the high-speed photography

    图  爆轰管内爆轰波传播及纳米颗粒生长示意图

    Figure  6.  Schematic diagram of detonation wave propagation and nanoparticle growth in detonation tube

    (a. Electric blasting; b. Detonation wave passing through the platform; c. First reflection of shock wave; d. Second reflection of shock wave.)

  • [1] CHEN Y, FAN Z X, ZHANG Z C, et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications [J]. Chemical Reviews, 2018, 118(13): 6409–6455. doi: 10.1021/acs.chemrev.7b00727
    [2] 赵铁军. 气相爆轰合成碳基磁性复合材料及其电磁波吸波性能研究[D]. 大连: 大连理工大学, 2019.

    ZHAO T J. Study on gaseous detonation preparation and electromagnetic wave absorption property of carbon-based magnetic composites [D]. Dalian: Dalian University of Technology, 2019.
    [3] STAVER A M, GUBAREVA N V, LYAMKIN A I, et al. Ultrafine diamond powders made by the use of explosion energy [J]. Combustion, Explosion and Shock Waves, 1984, 20(5): 567–570.
    [4] GREINER N R, PHILLIPS D S, JOHNSON J D, et al. Diamonds in detonation soot [J]. Nature, 1988, 333(6172): 440–442. doi: 10.1038/333440a0
    [5] LYAMKINA N E, CHIGANOVA G A, SLABKO V V, et al. Ultrafine Cr-doped Al2O3 prepared by detonation synthesis [J]. Inorganic Materials, 2005, 41(8): 830–835. doi: 10.1007/s10789-005-0221-y
    [6] QU Y D, LI X J, LI R Y, et al. Preparation and characterization of the TiO2 ultrafine particles by detonation method [J]. Materials Research Bulletin, 2008, 43(1): 97–103. doi: 10.1016/j.materresbull.2007.02.038
    [7] SARDAR K, DAN M, SCHWENZER B, et al. A simple single-source precursor route to the nanostructures of AlN, GaN and InN [J]. Journal of Materials Chemistry, 2005, 15(22): 2175–2177. doi: 10.1039/b502887f
    [8] SUN G L, LI X J, QU Y D, et al. Preparation and characterization of graphite nanosheets from detonation technique [J]. Materials Letters, 2008, 62(4/5): 703–706. doi: 10.1016/j.matlet.2007.06.035
    [9] XIE X H, LI X J, YAN H H. Detonation synthesis of zinc oxide nanometer powders [J]. Materials Letters, 2006, 60(25/26): 3149–3152. doi: 10.1016/j.matlet.2006.02.061
    [10] LUO N, LI X J, WANG X H, et al. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method [J]. Carbon, 2010, 48(13): 3858–3863. doi: 10.1016/j.carbon.2010.06.051
    [11] SONG J L, FENG S A, ZHAO J H, et al. Activated carbon catalyzing the formation of carbon nanotubes [J]. Materials Research Bulletin, 2010, 45(9): 1234–1239. doi: 10.1016/j.materresbull.2010.05.010
    [12] WANG C, ZHAN L, WANG Y L, et al. Effect of sulfur on the growth of carbon nanotubes by detonation-assisted chemical vapor deposition [J]. 2010, 257(3): 932−936.
    [13] WU L S, YAN H H, LI X J, et al. Characterization and photocatalytic properties of SnO2-TiO2 nanocomposites prepared through gaseous detonation method [J]. Ceramics International, 2017, 43(1): 1517–1521. doi: 10.1016/j.ceramint.2016.10.124
    [14] ZHAO T J, LI X J, YAN H H. Metal catalyzed preparation of carbon nanomaterials by hydrogen-oxygen detonation method [J]. Combustion and Flame, 2018, 196: 108–115. doi: 10.1016/j.combustflame.2018.06.011
    [15] NEPAL A, SINGH G P, FLANDERS B N, et al. One-step synthesis of graphene via catalyst-free gas-phase hydrocarbon detonation [J]. Nanotechnology, 2013, 24(24): 245602. doi: 10.1088/0957-4484/24/24/245602
    [16] HE C, YAN H H, LI X J, et al. In situ fabrication of carbon dots-based lubricants using a facile ultrasonic approach [J]. Green Chemistry, 2019, 21(9): 2279–2285. doi: 10.1039/C8GC04021D
    [17] 陈天梧, 罗宁, 闫鸿浩, 等. 气相爆炸流场中TiO2纳米颗粒生长的数值分析初探 [J]. 高压物理学报, 2014, 28(6): 729–735.

    CHEN T W, LUO N, YAN H H, et al. Numerical analysis of the formation of TiO2 nanoparticles in gas phase explosion flow field [J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 729–735.
    [18] LUO N, JING H, MA Z, et al. Growth characteristics of spherical titanium oxide nanoparticles during the rapid gaseous detonation reaction [J]. Particuology, 2016, 26: 102–107. doi: 10.1016/j.partic.2015.11.002
    [19] 闫鸿浩, 吴林松, 李晓杰, 等. 颗粒长大模型在气相爆轰合成纳米材料中的应用 [J]. 稀有金属材料与工程, 2015, 44(5): 1144–1148.

    YAN H H, WU L S, LI X J, et al. Application of particles growth model in gaseous detonation of SnO2 nanoparticles [J]. Rare Metal Materials and Engineering, 2015, 44(5): 1144–1148.
    [20] LUO N, SHEN H, JING H, et al. Numerical simulation of oxide nanoparticle growth characteristics under the gas detonation chemical reaction by space-time conservation element-solution element method [J]. Particuology, 2017, 35: 78–83. doi: 10.1016/j.partic.2017.01.006
    [21] ZHAO T J, LI X J, WANG Y, et al. Growth mechanism and wave-absorption properties of multiwalled carbon nanotubes fabricated using a gaseous detonation method [J]. Materials Research Bulletin, 2018, 102: 153–159. doi: 10.1016/j.materresbull.2018.02.033
    [22] ZHAO T J, WANG X H, LI X J, et al. Gaseous detonation synthesis of Co@C nanoparticles/CNTs materials [J]. Materials Letters, 2019, 236: 179–182. doi: 10.1016/j.matlet.2018.10.105
    [23] YAN H H, HUANG X C, XI S X. Using ethanol for preparation of nanosized TiO2 by gaseous detonation [J]. Combustion Explosion and Shock Waves, 2014, 50(2): 192–195. doi: 10.1134/S0010508214020105
    [24] YAN H H, WU L S, LI X J, et al. Optimal design and preparation of nano-TiO2 photocatalyst using gaseous detonation method [J]. Journal of Nanoscience and Nanotechnology, 2017, 17(3): 2124–2129. doi: 10.1166/jnn.2017.12688
    [25] 闫鸿浩, 吴林松, 李晓杰, 等. 爆温对气相爆轰合成纳米TiO2结构和性能的影响 [J]. 无机材料学报, 2017, 32(3): 275–280. doi: 10.15541/jim20160315

    YAN H H, WU L S, LI X J, et al. Influence of explosion temperature on structure and property of nano-TiO2 prepared by gaseous detonation method [J]. Journal of Inorganic Materials, 2017, 32(3): 275–280. doi: 10.15541/jim20160315
    [26] SPURR R A, MYERS H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer [J]. Analytical Chemistry, 1957, 29(5): 760–762. doi: 10.1021/ac60125a006
    [27] YAN H H, ZHAO T J, LI X J, et al. Slurry explosive detonation synthesis and characterization of 10 nm TiO2 [J]. Ceramics International, 2016, 42(13): 14862–14866. doi: 10.1016/j.ceramint.2016.06.122
    [28] ZHAO T J, YAN H H, LI X J, et al. Phase transition rate of anatase during detonation synthesis of TiO2 [J]. Phase Transitions, 2017, 90(6): 618–627. doi: 10.1080/01411594.2016.1252981
  • 加载中
图(6)
计量
  • 文章访问数:  1655
  • HTML全文浏览量:  681
  • PDF下载量:  19
出版历程
  • 收稿日期:  2021-03-15
  • 修回日期:  2021-04-07

目录

    /

    返回文章
    返回