AlxCoCrFeNi高熵合金力学性能的分子动力学模拟

张路明 马胜国 李志强 辛浩

张路明, 马胜国, 李志强, 辛浩. AlxCoCrFeNi高熵合金力学性能的分子动力学模拟[J]. 高压物理学报, 2021, 35(5): 052201. doi: 10.11858/gywlxb.20210730
引用本文: 张路明, 马胜国, 李志强, 辛浩. AlxCoCrFeNi高熵合金力学性能的分子动力学模拟[J]. 高压物理学报, 2021, 35(5): 052201. doi: 10.11858/gywlxb.20210730
ZHANG Luming, MA Shengguo, LI Zhiqiang, XIN Hao. Mechanical Properties of AlxCoCrFeNi High-Entropy Alloy: A Molecular Dynamics Study[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 052201. doi: 10.11858/gywlxb.20210730
Citation: ZHANG Luming, MA Shengguo, LI Zhiqiang, XIN Hao. Mechanical Properties of AlxCoCrFeNi High-Entropy Alloy: A Molecular Dynamics Study[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 052201. doi: 10.11858/gywlxb.20210730

AlxCoCrFeNi高熵合金力学性能的分子动力学模拟

doi: 10.11858/gywlxb.20210730
基金项目: 国家自然科学基金(11972244);山西省应用基础研究计划(201901D111088)
详细信息
    作者简介:

    张路明(1997-),男,硕士研究生,主要从事分子动力学研究.E-mail:zhangluming0036@link.tyut.edu.cn

    通讯作者:

    辛 浩(1985-),男,副教授,主要从事新型材料力学性能的分子动力学研究.E-mail:xinhao@tyut.edu.cn

  • 中图分类号: O344.3; O521.2

Mechanical Properties of AlxCoCrFeNi High-Entropy Alloy: A Molecular Dynamics Study

  • 摘要: 通过分子动力学方法模拟了原子尺度下高熵合金的制备过程,对AlCoCrFeNi进行了微观组织分析,研究了温度和Al含量变化时AlCoCrFeNi高熵合金在轴向载荷作用下的力学性能。模拟结果显示:AlxCoCrFeNi高熵合金在拉伸过程中依次经历弹性—屈服—塑性阶段。屈服后,材料开始出现位错,随之出现层错和孪晶;随着位错的不断产生和湮灭,材料产生了不均匀塑性变形。分析显示:Al与其他元素的原子半径差产生的晶格畸变效应以及Al与其他原子的结合力影响了高熵合金的杨氏模量和屈服应力;温度升高导致金属原子间的热振动加剧,原子动能增加,原子间的距离增大,原子间的结合力下降,致使合金的弹性模量和屈服应力下降,温度的净效应类似于晶格畸变。

     

  • 图  AlCoCrFeNi模型及原子结构

    Figure  1.  Model and atomic structure of AlCoCrFeNi HEA

    图  Al0.1CoCrFeNi在拉伸加载下的应力-应变曲线

    Figure  2.  Stress-strain relations of Al0.1CoCrFeNi under tensile loading

    图  不同拉伸应变下Al0.1CoCrFeNi高熵合金的微观结构

    Figure  3.  Micro-structure of Al0.1CoCrFeNi HEA under different strains

    图  不同拉伸应变下Al0.1CoCrFeNi高熵合金的位错演化

    Figure  4.  Dislocation evolution of Al0.1CoCrFeNi HEA under different strains

    图  300 K下不同Al含量的径向分布函数

    Figure  5.  RDF at 300 K under different Al concentrations

    图  不同Al含量时径向分布函数的半峰全宽

    Figure  6.  FWHM of RDF under different Al concentrations

    图  不同Al含量下AlxCoCrFeNi的拉伸应力-应变曲线

    Figure  7.  Tensile stress-strain curves of AlxCoCrFeNi under different Al concentrations

    图  不同温度下Al0.1CoCrFeNi的拉伸应力-应变曲线

    Figure  8.  Tensile stress-strain curves of Al0.1CoCrFeNi under different temperatures

    图  不同温度下模型达到弹性极限的CNA图

    Figure  9.  CNA diagram of the model reaching the elastic limit at different temperatures

    图  10  不同温度下杨氏模量和拉伸强度的变化

    Figure  10.  Young’s modulus and tensile strength at different temperatures

    表  1  不同原子的半径

    Table  1.   Radius of different atoms Å

    AlCoCrFeNi
    1.431.251.241.241.24
    下载: 导出CSV

    表  2  晶格常数、混合熵、混合焓、熔化相互作用参数及原子尺寸差

    Table  2.   Lattice constants, entropy of mixing, enthalpy of mixing, regular melt interaction parameter, and atomic-size difference

    AlloyLattice constant/nm${\Delta }{S}{_{ {\rm{mix} }} }$/(J·mol−1·K−1)${\Delta }{H}{_{\rm{mix} } }/(\mathrm{k}\mathrm{J} \cdot {\mathrm{m}\mathrm{o}\mathrm{l} }{^{-1}})$$ \varOmega $$\delta /\text{%}$
    CoCrFeNi0.358011.53−3.755.711.06
    Al0.25CoCrFeNi0.359212.71−6.253.403.25
    Al0.50CoCrFeNi0.3603, 0.287513.15−9.092.554.22
    Al0.75CoCrFeNi0.3603, 0.287713.33−10.90 2.094.83
    AlCoCrFeNi0.287913.38−12.32 1.835.25
    下载: 导出CSV

    表  3  AlxCoCrFeNi高熵合金中Al含量、各元素原子个数及模型体积和密度

    Table  3.   Al concentration, atomic number of each element and bulk and density of the model in AlxCoCrFeNi HEA

    xxAl/%Atomic numberVolume/(10−30 m3)Density/(g·cm−3)
    AlCoCrFeNi
    0.12.4 2250237032318423439234241088008.38.160
    0.37.0 6948219032290222059221881107889.77.799
    0.511.1 10959208982192421123210961126321.67.497
    0.714.9 14616199982089520331201601144551.17.222
    1.020.0 19047190921964119035189151170662.16.856
    下载: 导出CSV

    表  4  AlxCoCrFeNi在单轴拉伸加载下的力学性能

    Table  4.   Mechanical properties of AlxCoCrFeNi under uniaxial tensile loading

    xE/GPaY/GPa$\varepsilon $Y
    0.1115.2914.6380.131
    0.3 97.6511.3720.117
    0.5 86.95 8.8090.103
    0.7 76.88 6.7380.089
    1.0 64.18 4.5100.071
    下载: 导出CSV

    表  5  不同温度下Al0.1CoCrFeNi在单轴拉伸载荷下的力学性能

    Table  5.   Mechanical properties of Al0.1CoCrFeNi under uniaxial tensile loading at different temperatures

    T/KE/GPaY/GPa$ \varepsilon$Y
    77116.7416.0980.140
    300115.2914.6380.131
    500110.9213.1690.123
    700104.7111.5960.113
    1000 95.82 9.5210.102
    下载: 导出CSV
  • [1] CHEN W P, FU Z Q, FANG S C, et al. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy [J]. Materials & Design, 2013, 51: 854–860. doi: 10.1016/J.MATDES.2013.04.061
    [2] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299–303. doi: 10.1002/adem.200300567
    [3] CHUANG M H, TSAI M H, WANG W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Materialia, 2011, 59(16): 6308–6317. doi: 10.1016/j.actamat.2011.06.041
    [4] 李天昕, 卢一平, 曹志强, 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战 [J]. 金属学报, 2021, 57(1): 42–54. doi: 10.11900/0412.1961.2020.00293

    LI T X, LU Y P, CAO Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metallurgica Sinica, 2021, 57(1): 42–54. doi: 10.11900/0412.1961.2020.00293
    [5] LI J, FANG Q H, LIU B, et al. Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation [J]. RSC Advances, 2016, 6(80): 76409–76419. doi: 10.1039/C6RA16503F
    [6] SHARMA A, BALASUBRAMANIAN G. Dislocation dynamics in Al0.1CoCrFeNi high-entropy alloy under tensile loading [J]. Intermetallics, 2017, 91: 31–34. doi: 10.1016/j.intermet.2017.08.004
    [7] AFKHAM Y, BAHRAMYAN M, TAHERZADEH R, et al. Tensile properties of AlCrCoFeCuNi glassy alloys: a molecular dynamics simulation study [J]. Materials Science and Engineering: A, 2017, 698: 143–151. doi: 10.1016/j.msea.2017.05.057
    [8] LI J, CHEN H T, LI S X, et al. Tuning the mechanical behavior of high-entropy alloys via controlling cooling rates [J]. Materials Science and Engineering: A, 2019, 760: 359–365. doi: 10.1016/j.msea.2019.06.017
    [9] JIAN W R, XIE Z C, XU S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Materialia, 2020, 199: 352–369. doi: 10.1016/j.actamat.2020.08.044
    [10] 李春艳, 刘华, 刘波涛. 分子动力学模拟基本原理及研究进展 [J]. 广州化工, 2011, 39(4): 11–13. doi: 10.3969/j.issn.1001-9677.2011.04.004

    LI C Y, LIU H, LIU B T. Development and methods of molecular dynamics simulation [J]. Guangzhou Chemical Industry, 2011, 39(4): 11–13. doi: 10.3969/j.issn.1001-9677.2011.04.004
    [11] 李健, 郭晓璇, 马胜国, 等. AlCrFeCuNi高熵合金力学性能的分子动力学模拟 [J]. 高压物理学报, 2020, 34(1): 011301. doi: 10.11858/gywlxb.20190762

    LI J, GUO X X, MA S G, et al. Mechanical properties of AlCrFeCuNi high entropy alloy: a molecular dynamics study [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011301. doi: 10.11858/gywlxb.20190762
    [12] FARKAS D, CARO A. Model interatomic potentials and lattice strain in a high-entropy alloy [J]. Journal of Materials Research, 2018, 33(19): 3218–3225. doi: 10.1557/jmr.2018.245
    [13] 李健. 五边形石墨烯/高熵合金力学性能的分子动力学研究[D]. 太原: 太原理工大学, 2019.

    LI J. Mechanical properties of penta-graphene and high entropy alloy: a molecular dynamics study [D]. Taiyuan: Taiyuan University of Technology, 2019.
    [14] HONEYCUTT J D, ANDERSEN H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J]. The Journal of Physical Chemistry, 1987, 91(19): 4950–4963. doi: 10.1021/j100303a014
    [15] STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8): 085007. doi: 10.1088/0965-0393/20/8/085007
    [16] TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transactions, 2005, 46(12): 2817–2829. doi: 10.2320/matertrans.46.2817
    [17] MA S G, LIAW P K, GAO M C, et al. Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer [J]. Journal of Alloys and Compounds, 2014, 604: 331–339. doi: 10.1016/j.jallcom.2014.03.050
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  2243
  • HTML全文浏览量:  1002
  • PDF下载量:  72
出版历程
  • 收稿日期:  2021-03-04
  • 修回日期:  2021-04-07

目录

    /

    返回文章
    返回