热刺激下不同结构引信的响应机理

徐瑞 智小琦 于永利 高峰

徐瑞, 智小琦, 于永利, 高峰. 热刺激下不同结构引信的响应机理[J]. 高压物理学报, 2021, 35(5): 055101. doi: 10.11858/gywlxb.20210720
引用本文: 徐瑞, 智小琦, 于永利, 高峰. 热刺激下不同结构引信的响应机理[J]. 高压物理学报, 2021, 35(5): 055101. doi: 10.11858/gywlxb.20210720
XU Rui, ZHI Xiaoqi, YU Yongli, GAO Feng. Response Mechanism of Fuse with Different Structures under Thermal Stimulation[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055101. doi: 10.11858/gywlxb.20210720
Citation: XU Rui, ZHI Xiaoqi, YU Yongli, GAO Feng. Response Mechanism of Fuse with Different Structures under Thermal Stimulation[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055101. doi: 10.11858/gywlxb.20210720

热刺激下不同结构引信的响应机理

doi: 10.11858/gywlxb.20210720
详细信息
    作者简介:

    徐 瑞(1996-),男,硕士研究生,主要从事战斗部毁伤技术研究. E-mail:2473077009@qq.com

    通讯作者:

    智小琦(1963-),女,博士,教授,主要从事战斗部毁伤技术及弹药易损性研究. E-mail:zxq4060@sina.com

  • 中图分类号: TJ430

Response Mechanism of Fuse with Different Structures under Thermal Stimulation

  • 摘要: 为了掌握引信在泄压结构作用下的响应特性,通过自行设计的引信泄压装置,开展了烤燃条件下泄压装置对引信响应剧烈程度的影响研究。试验结果表明,慢速烤燃和快速烤燃条件下,泄压结构均可以有效降低引信响应时刻的内部压力,降低引信在烤燃条件下的响应烈度,但是引信在慢速烤燃和快速烤燃条件下的响应情况存在一定差异。通过数值模拟对引信的响应情况进一步分析,结果表明:慢速烤燃条件下,引信点火点位于传爆药柱中心;快速烤燃条件下,引信点火点位于传爆药底部。点火位置不同使得传爆药的压力释放过程不同,慢速烤燃通过中心点火形成从中心至泄压孔的排气通道来释放内部压力,快速烤燃泄压孔释放部分压力后,剩余压力导致底部端盖被冲破。

     

  • 图  泄压孔结构示意图

    Figure  1.  Schematic diagram of venting structure

    图  试验引信实物

    Figure  2.  Physical image of tested fuse

    图  外壁温度-时间曲线

    Figure  3.  Temperature-time curve of outer wall

    图  无泄压孔时引信的响应情况

    Figure  4.  Fuse response without venting structure

    图  有6.00 mm泄压孔时引信的响应情况

    Figure  5.  Response of the fuse with 6.00 mm venting structure

    图  有6.00 mm泄压孔时外壁温度-时间曲线

    Figure  6.  Temperature-time curve of outer wall with 6.00 mm venting structure

    图  不同引信快速烤燃温度-时间曲线

    Figure  7.  Fast cook-off temperature history of different fuses

    图  无泄压孔时引信快烤响应情况

    Figure  8.  Fast cook-off response of the fuse without venting structure

    图  有6.00 mm泄压孔时引信快烤响应情况

    Figure  9.  Fast cook-off response of the fuse with 6.00 mm venting structure

    图  10  不同时刻慢速烤燃引信内部温度云图

    Figure  10.  Temperature contours inside the slow cook-off fuse at different moments

    图  11  装药内部裂纹扩展示意图

    Figure  11.  Schematic diagram of crack propagation inside explosive

    图  12  快速烤燃引信内部温度分布

    Figure  12.  Internal temperature distribution of a fast cook-off fuse

    图  13  热通量曲线

    Figure  13.  Heat flux curves

    图  14  点火时刻传爆药压力增长速率比值

    Figure  14.  Ratio of the pressure increase rate of the booster explosive at the moment of ignition

    表  1  炸药在不同温度下点火所需泄压孔的尺寸

    Table  1.   Size of venting structure required for explosive ignition at different temperatures

    Temperature/KAV/SBTemperature/KAV/SB
    4430.00654730.0078
    4530.00694830.0083
    4630.00734950.0091
    下载: 导出CSV

    表  2  不同引信慢速烤燃试验结果

    Table  2.   Results of slow cook-off test of different fuses

    Test No.Venting structureResponse time/minResponse temperature/℃Reaction violence
    A1None1566.4180.9Combustion
    A2None1422.7171.0Combustion
    B16.00 mm1442.3179.7Under the combustion
    B26.00 mm1556.8187.7Under the combustion
    下载: 导出CSV

    表  3  装填FOX-7炸药引信的快烤试验结果

    Table  3.   Fast cook-off test results of fuses with FOX-7 explosive

    Test No.Response time/sAverage temperature after flame stabilization/℃Venting structureReaction violence
    C1108576.0NoneCombustion
    C2113576.0NoneCombustion
    D1 59688.56.00 mmCombustion
    D2 62688.56.00 mmCombustion
    下载: 导出CSV

    表  4  FOX-7炸药的物性参数与化学反应动力学参数

    Table  4.   Property parameters and chemical reaction kinetic parameters of FOX-7 explosive

    Material$\,\rho/({\rm {kg}}\cdot {\mathrm{m} }{^{-3} }$)${c}{{_V}}/(\rm{J}\cdot {\rm{k}\rm{g} }{^{-1} } \cdot {\rm{K} }{^ {-1} } )$$\lambda/(\mathrm{J}\cdot {\mathrm{m} }{^{-1}} \cdot {\mathrm{K} }{^{-1}} \cdot {\mathrm{s} }{^{-1}} )$$Q/(\mathrm{MJ}\cdot {\mathrm{k}\mathrm{g} }{^{-1}} )$$Z/{\mathrm{s} }{^{-1} }$$E/(\mathrm{k}\mathrm{J}\cdot {\mathrm{m}\mathrm{o}\mathrm{l} }{^{-1}} )$
    FOX-716001423.870.259.2934.5×1026275.97
    Steel785048043
    下载: 导出CSV
  • [1] KELLEY S, CENTER A A, DIRECTORATE A. Venting techniques for penetrator warheads [C]//Insensitive Munitions & Energetic Materials Technology Symposium. Munich, Germany, 2010.
    [2] MADSEN T, DEFISHER S, BAKER E L, et al. Explosive venting technology for cook-off response mitigation: ARMET-TR-10003 [R]. Picatinny Arsenal, NJ: Munitions Engineering Technology Center, 2010.
    [3] 陈科全, 黄亨建, 路中华, 等. 一种弹体排气缓释结构设计方法与试验研究 [J]. 弹箭与制导学报, 2015, 35(4): 15–18. doi: 10.15892/j.cnki.djzdxb.2015.04.004

    CHEN K Q, HUANG H J, LU Z H, et al. Structural design and experimental study on venting of projectile body [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(4): 15–18. doi: 10.15892/j.cnki.djzdxb.2015.04.004
    [4] 沈飞, 王胜强, 王辉. HMX基含铝炸药装药慢烤缓释结构设计及验证 [J]. 含能材料, 2019, 27(10): 861–866. doi: 10.11943/CJEM2018273

    SHEN F, WANG S Q, WANG H. Slow release structure design and verification of HMX-based aluminized explosive charge under slow cook-off condition [J]. Chinese Journal of Energetic Materials, 2019, 27(10): 861–866. doi: 10.11943/CJEM2018273
    [5] GRAHAM K J. Mitigation of fuel fire threat to large rocket motors by venting [C]//Insensitive Munitions & Energetic Materials Symposium. Munich, Germany, 2010.
    [6] KINNEY G F, SEWELL R G S. Venting of explosions: NWC TM 2448 [R]. China Lake: Naval Weapons Center, 1974.
    [7] SINDITSKII V P, LEVSHENKOV A I, EGORSHEV V Y, et al. Study on combustion and thermal decomposition of 1, 1-diamino-2, 2-dinitroethylene (FOX-7) [C]//Proceedings of the International Pyrotechnics Seminar. California, 2006.
    [8] 胡荣祖, 赵凤起, 高红旭, 等. 用C-H-N-O炸药的Mρ、ΔfHC pTigorb和爆轰产物的ΔfH估算炸药的爆轰性能 [J]. 火炸药学报, 2013, 36(2): 20–23. doi: 10.3969/j.issn.1007-7812.2013.02.005

    HU R Z, ZHAO F Q, GAO H X, et al. Estimation of detonation performances of explosives using M, ρ, ΔfH, C p, Tigorb of C-H-O-N explosives and ΔfH of detonation products [J]. Chinese Journal of Explosives & Propellants, 2013, 36(2): 20–23. doi: 10.3969/j.issn.1007-7812.2013.02.005
    [9] 薛超阳, 智小琦, 王帅, 等. 某引信及其等效构件的慢速烤燃研究 [J]. 兵工学报, 2019, 40(5): 962–967. doi: 10.3969/j.issn.1000-1093.2019.05.008

    XUE C Y, ZHI X Q, WANG S, et al. Study of cook-off of a fuze and its equivalent components [J]. Acta Armamentarii, 2019, 40(5): 962–967. doi: 10.3969/j.issn.1000-1093.2019.05.008
    [10] BOBELEV V K, MARGOLIN A D, CHUIKO S V. The mechanism by which combustion products penetrate into the pores of a charge explosive material [J]. Proceeding of the National Academy of Sciences, 1965.
    [11] 杨世铭. 传热学[M]. 2版. 北京: 高等教育出版社, 1987: 330−333.

    YANG S M. Heat transfer [M]. 2nd ed. Beijing: Higher Education Press, 1987: 330−333.
    [12] 吴松, 李明海, 张中礼. 火灾环境下含炸药结构传热问题的数值模拟 [J]. 含能材料, 2014, 22(5): 617–623. doi: 10.3969/j.issn.1006-9941.2014.05.008

    WU S, LI M H, ZHANG Z L. Numerical simulation of heat transfer problems in structure with explosive under fire [J]. Chinese Journal of Energetic Materials, 2014, 22(5): 617–623. doi: 10.3969/j.issn.1006-9941.2014.05.008
    [13] CONOLLY R, DAVIES R M. A study of convective heat transfer from flames [J]. International Journal of Heat and Mass Transfer, 1972, 15(11): 2155–2172. doi: 10.1016/0017-9310(72)90039-7
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  1836
  • HTML全文浏览量:  756
  • PDF下载量:  25
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-03-06

目录

    /

    返回文章
    返回