细水雾协同滑动装置对甲烷/空气预混气体爆炸特性的影响

段玉龙 李元兵 杨燕铃 龙凤英 俞树威 黄俊 卜云兵

段玉龙, 李元兵, 杨燕铃, 龙凤英, 俞树威, 黄俊, 卜云兵. 细水雾协同滑动装置对甲烷/空气预混气体爆炸特性的影响[J]. 高压物理学报, 2021, 35(5): 055202. doi: 10.11858/gywlxb.20210718
引用本文: 段玉龙, 李元兵, 杨燕铃, 龙凤英, 俞树威, 黄俊, 卜云兵. 细水雾协同滑动装置对甲烷/空气预混气体爆炸特性的影响[J]. 高压物理学报, 2021, 35(5): 055202. doi: 10.11858/gywlxb.20210718
DUAN Yulong, LI Yuanbing, YANG Yanling, LONG Fengying, YU Shuwei, HUANG Jun, BU Yunbing. Influence of Water Mist and Sliding Device on Explosion Characteristics of Premixed Methane/Air[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055202. doi: 10.11858/gywlxb.20210718
Citation: DUAN Yulong, LI Yuanbing, YANG Yanling, LONG Fengying, YU Shuwei, HUANG Jun, BU Yunbing. Influence of Water Mist and Sliding Device on Explosion Characteristics of Premixed Methane/Air[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055202. doi: 10.11858/gywlxb.20210718

细水雾协同滑动装置对甲烷/空气预混气体爆炸特性的影响

doi: 10.11858/gywlxb.20210718
基金项目: 国家自然科学基金(51704054);重庆市自然科学基金(cstc2019jcyj-msxmX0324,cst2019jcyj-msxmX0351);重庆市教育委员会科技攻关计划(KJQN201801517);重庆科技学院科技创新研究生项目(YKJCX1920706,YKJCX1920707,YKJCX2020727,YKJCK2020736,YKJCX2020742)
详细信息
    作者简介:

    段玉龙(1982-),男,博士,副研究员,主要从事油气爆炸动力学研究. E-mail:dylnhz@126.com

  • 中图分类号: O382.1

Influence of Water Mist and Sliding Device on Explosion Characteristics of Premixed Methane/Air

  • 摘要: 大量甲烷爆炸事故表明,甲烷/空气预混气体爆炸容易造成大量人员伤亡和巨大财产损失。利用10 cm × 10 cm × 100 cm透明实验管道,探究了细水雾协同滑动装置对甲烷爆炸特性的影响,并着重分析爆炸火焰和超压。结果表明:协同作用下,细水雾对燃烧区超压的影响较小,对未燃区超压峰值有明显衰减作用,甲烷体积分数为11.5%时衰减幅度最大,为44.71%。细水雾对指形火焰有冲毁作用,可加快火焰传播速度,甲烷体积分数为11.5%时,火焰传播速度的提升幅度最大,为62.50%。滑动装置反向压缩火焰至细水雾作用区,加速火焰焠熄。甲烷体积分数为9.5%和11.5%时,火焰焠熄时间明显下降,分别为20.76%和29.65%;甲烷体积分数为7.5%时,火焰焠熄时间下降3.5 ms。

     

  • 图  爆炸实验系统

    Figure  1.  Experimental system

    图  滑动装置作用下甲烷爆炸超压变化

    Figure  2.  Overpressure changes of methane explosion under the action of sliding device

    图  细水雾协同滑动装置作用下甲烷爆炸超压变化

    Figure  3.  Overpressure changes of methane explosion under the action of water mist and sliding device

    图  添加细水雾与无细水雾工况下压力对比

    Figure  4.  Pressure comparison chart between water mist added and no water mist

    图  滑动装置存在下火焰前锋传播示意图

    Figure  5.  Schematic diagram of flame front propagation in the presence of a sliding device

    图  添加细水雾工况下火焰前锋传播示意图

    Figure  6.  Schematic diagram of flame front propagation under the condition of adding water mist

    图  火焰焠熄时间

    Figure  7.  Flame quenching time

    图  火焰前锋传播速度和滑动装置滑移速度

    Figure  8.  Propagation velocity of flame front and sliding velocity of sliding device

    表  1  压力传感器位置

    Table  1.   Distribution of pressure sensors along the pipeline

    Location of sensorVoltage sensitivity/(mV·MPa−1)Range/MPaInstallation position/cm
    P17 1800–0.6917.5
    P27 6080–0.69100.0
    下载: 导出CSV

    表  2  实验工况

    Table  2.   Experimental conditions

    Condition No.$\varphi$/%Water mist/MPaCondition No.$\varphi$/%Water mist/MPa
    1 (C1) 7.54 (C4) 7.50.1
    2 (C2) 9.55 (C5) 9.50.1
    3 (C3)11.56 (C6)11.50.1
    下载: 导出CSV

    表  3  细水雾作用下P1P2测量点处压力

    Table  3.   Pressure at P1 and P2 measuring points under the action of water mist

    $\varphi $/%Overpressure/kPaPercentage drop/%
    P1P2
    7.515.0 9.238.67
    9.519.014.026.32
    11.515.0 9.437.33
    下载: 导出CSV
  • [1] 丁小勇. 甲烷-空气爆炸火焰传播的微观研究[D]. 太原: 中北大学, 2013.

    DING X Y. Microscopic research of flame propagation on methane-air explosion [D]. Taiyuan: North University of China, 2013.
    [2] 王秋菊. 细水雾作用于甲烷爆炸数值模拟[D]. 大连: 大连理工大学, 2016.

    WANG Q J. Numerical simulation of methane explosion affected by fine water mist [D]. Dalian: Dalian University of Technology, 2016.
    [3] 陆守香, 何杰, 于春红, 等. 水抑制瓦斯爆炸的机理研究 [J]. 煤炭学报, 1998, 23(4): 417–421.

    LU S X, He J, YU C H, et al. Mechanism of gas explosion suppression by water [J]. Journal of China Coal Society, 1998, 23(4): 417–421.
    [4] WINGERDEN K V. Mitigation of gas explosions using water deluge [J]. Process Safety Progress, 2000, 19(3): 173–178. doi: 10.1002/prs.680190309
    [5] MEDVEDEV S P, GELl'FAND B E, POLENOV A N, et al. Flammability limits for hydrogen-air mixtures in the presence of ultrafine droplets of water (fog) [J]. Combustion Explosion and Shock Waves, 2002, 38(4): 381–386. doi: 10.1023/A:1016277028276
    [6] 张鹏鹏. 超细水雾增强与抑制瓦斯爆炸的实验研究[D]. 大连: 大连理工大学, 2013.

    ZHANG P P. Experimental study of enhancing and mitigating the methane/air explosion by ultrafine water mist [D]. Dalian: Dalian University of Technology, 2013.
    [7] YU M G, WAN S J, XU Y L, et al. The influence of the charge-to-mass ratio of the charged water mist on a methane explosion [J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 68–76. doi: 10.1016/j.jlp.2016.03.020
    [8] 余明高, 万少杰, 徐永亮, 等. 荷电细水雾对管道瓦斯爆炸超压的影响规律研究 [J]. 中国矿业大学学报, 2015, 44(2): 227–232.

    YU M G, WAN S J, XU Y L, et al. Study on the overpressure of gas explosion in the pipeline affected by charged water mist [J]. Journal of China University of Mining and Technology, 2015, 44(2): 227–232.
    [9] 余明高, 杨勇, 裴蓓, 等. N2双流体细水雾抑制管道瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(2): 194–200. doi: 10.11883/1001-1455(2017)02-0194-07

    YU M G, YANG Y, PEI B, et al. Experimental study on suppression of pipeline gas explosion by N2 two-fluid water mist [J]. Explosion and Shock Waves, 2017, 37(2): 194–200. doi: 10.11883/1001-1455(2017)02-0194-07
    [10] 裴蓓, 余明高, 陈立伟, 等. CO2-双流体细水雾抑制管道甲烷爆炸实验 [J]. 化工学报, 2016, 67(7): 3101–3108.

    PEI B, YU M G, CHEN L W, et al. Suppression effect of CO2-twin fluid water mist on methane/air explosion in vented duct [J]. CIESC Journal, 2016, 67(7): 3101–3108.
    [11] 贾海林, 项海军, 李第辉, 等. 含NaCl超细水雾对不同阻塞率管道内爆炸的抑制 [J]. 爆炸与冲击, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268

    JIA H L, XIANG H J, LI D H, et al. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride [J]. Explosion and Shock Waves, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268
    [12] 贾海林, 翟汝鹏, 李第辉, 等. 三种盐类超细水雾抑制管道内甲烷-空气预混气爆炸的差异性 [J]. 爆炸与冲击, 2020, 40(8): 082201.

    JIA H L, ZHAI R P, LI D H, et al. Differences of premixed methane-air explosion in pipelines suppressed by three ultrafine water mists containing different salts [J]. Explosion and Shock Waves, 2020, 40(8): 082201.
    [13] DUAN Y L, YANG Y L, LI Y B, et al. Study on the explosion characteristics of methane/air premixed gas under the inhibition of sliding airtight device [J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2020: 1–17.
    [14] XIAO H H, WANG Q S, SHEN X B, et al. An experimental study of premixed hydrogen/air flame propagation in a partially open duct [J]. International Journal of Hydrogen Energy, 2014, 39(11): 6233–6241. doi: 10.1016/j.ijhydene.2013.05.003
    [15] YU M G, YANG X F, ZHENG K, et al. Experimental study of premixed syngas/air flame propagation in a half-open duct [J]. Fuel, 2018, 225: 192–202. doi: 10.1016/j.fuel.2018.03.127
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1724
  • HTML全文浏览量:  1004
  • PDF下载量:  20
出版历程
  • 收稿日期:  2021-01-29
  • 修回日期:  2021-03-23

目录

    /

    返回文章
    返回