含有小尺寸分层缺陷复合材料压力容器的应变响应及分析

柏慧 惠虎 杨斌 孔芳

柏慧, 惠虎, 杨斌, 孔芳. 含有小尺寸分层缺陷复合材料压力容器的应变响应及分析[J]. 高压物理学报, 2021, 35(5): 054203. doi: 10.11858/gywlxb.20210717
引用本文: 柏慧, 惠虎, 杨斌, 孔芳. 含有小尺寸分层缺陷复合材料压力容器的应变响应及分析[J]. 高压物理学报, 2021, 35(5): 054203. doi: 10.11858/gywlxb.20210717
BAI Hui, HUI Hu, YANG Bin, KONG Fang. Strain Response and Analysis of Pressure Vessels with Small Delamination Defects[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054203. doi: 10.11858/gywlxb.20210717
Citation: BAI Hui, HUI Hu, YANG Bin, KONG Fang. Strain Response and Analysis of Pressure Vessels with Small Delamination Defects[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054203. doi: 10.11858/gywlxb.20210717

含有小尺寸分层缺陷复合材料压力容器的应变响应及分析

doi: 10.11858/gywlxb.20210717
基金项目: 国家自然科学基金(51775187,51835003)
详细信息
    作者简介:

    柏 慧(1994-),女,博士研究生,主要从事压力容器和管道结构完整性和安全性研究.E-mail:dongyoubaihui@163.com

    通讯作者:

    惠 虎(1974-),男,博士,教授,主要从事压力容器及管道的结构完整性、奥氏体不锈钢容器的应变强化技术以及移动式压力容器的安全泄放装置研究. E-mail:huihu@ecust.edu.cn

  • 中图分类号: O342

Strain Response and Analysis of Pressure Vessels with Small Delamination Defects

  • 摘要: 采用乙烯基酯树脂预浸料,利用缠绕法制造了ECR耐腐蚀玻璃纤维增强环氧树脂基复合材料压力容器,在水压试验过程中基于电测法测量压力容器筒体的应变变化情况,结合Abaqus/Explicit有限元模拟重点预测了含有内部分层缺陷的压力容器在外载荷作用下的应变响应。试验和模拟结果表明:该有限元模型的结果与实验结果的相对误差小于12%;当含有内部分层缺陷(缺陷直径分别为10、20、30、40和50 mm)的复合材料压力容器受到位移载荷时,周向应变是主要应变,最大纵向应变和Mises应力位置与加载位置重合,且最大Mises应力随分层面积的增加而增大。

     

  • 图  纤维缠绕压力容器的制造示意图

    Figure  1.  Schematic diagram of fabrication of thefiber wound pressure vessel

    图  水压试验和应变测量系统

    Figure  2.  Hydraulic test and strain measurement system

    图  有限元模型与数值模拟结果

    Figure  3.  Finite element model and numerical simulation results

    图  含有分层缺陷压力容器的有限元模型

    Figure  4.  Finite element model of a pressure vessel with stratified defects

    图  含有不同尺寸分层缺陷复合材料压力容器的应力云图

    Figure  5.  Stress contour of composite pressure vessel with different delamination defects

    图  含有不同尺寸分层缺陷复合材料压力容器的应变云图

    Figure  6.  Strain contour of composite pressure vessel with different delamination defects

    图  分析路径的选择

    Figure  7.  Selection of analysis paths

    图  不同分层面积应变沿路径的变化曲线

    Figure  8.  Variation curves of area strain in different layers along the path

    表  1  玻璃纤维/环氧树脂复合材料板的刚度参数[18-19]

    Table  1.   Stiffness parameters of glass fiber/epoxy resin composite plate[18-19]  

    E1/GPaE2/GPaE3/GPaG12/GPaG13/GPaG23/GPav12v13v23
    39.39 ± 0.3618.10 ± 0.2418.10 ± 0.246.31 ± 0.386.00 ± 0.276.00 ± 0.270.270 ± 0.0120.350 ± 0.0150.350 ± 0.015
    下载: 导出CSV

    表  2  玻璃纤维/环氧树脂复合材料板的强度参数[18-19]

    Table  2.   Strength parameters of glass fiber/epoxy rsesin composite plate[18-19] MPa 

    XTXCYTYCZTZCS12S13S23
    222.7 ± 18.0200 ± 22136 ± 22100 ± 450 ± 2100 ± 490.5 ± 4.250.00 ± 3.1250.00 ± 3.12
    下载: 导出CSV

    表  3  玻璃纤维压力容器的材料刚度递减规则

    Table  3.   Decreasing rules of material stiffness for glass fiber pressure vessels

    Failure modeRules for decreasing stiffness of materials
    Tensile damage of longitudinal fiberE11 = 0.07E11, G12 = 0.07G12, G13 = 0.07G13, v12 = 0.07v12, v13 = 0.07v13
    Compression damage of transverseE11 = 0.14E11, G12 = 0.14G12, G13 = 0.14G13, v12 = 0.14v12, v13 = 0.14v13
    Radial fiber tensile damageE22 = 0.2E22, G12 = 0.2G12, G23 = 0.2G23, v12 = 0.2v12, v23 = 0.2v23
    Radial fiber compression damageE22 = 0.4E22, G12 = 0.4G12, G23 = 0.4G23, v12 = 0.4v12, v23 = 0.4v23
    Z-direction fiber tensile damageE33 = 0.2E33, G13 = 0.2G13, G23 = 0.2G23, v13 = 0.2v13, v23 = 0.2v23
    Z-direction fiber compression damageE33 = 0.2 E33, G13 = 0.2G13, G23 = 0.2G23, v13 = 0.2v13, v23 = 0.2v23
    下载: 导出CSV
  • [1] HAN M G, CHANG S H. Failure analysis of a Type Ⅲ hydrogen pressure vessel under impact loading induced by free fall [J]. Composite Structures, 2015, 127: 288–297. doi: 10.1016/j.compstruct.2015.03.027
    [2] PERILLO G, GRYTTEN F, SØRBØ S, et al. Numerical/experimental impact events on filament wound composite pressure vessel [J]. Composites Part B: Engineering, 2015, 69: 406–417.
    [3] 杨留鑫. 低速冲击载荷下复合材料缠绕压力容器的损伤分析 [D]. 大连: 大连理工大学, 2012.

    YANG L X. Damage analysis of composite overwrapped pressure vessel under low velocity impact [D]. Dalian: Dalian University of Technology, 2012.
    [4] HER S C, LIANG Y C. The finite element analysis of composite laminates and shell structures subjected to low velocity impact [J]. Composite Structures, 2004, 66(1/2/3/4): 277–285.
    [5] SHI Y, SWAIT T, SOUTIS C. Modelling damage evolution in composite laminates subjected to low velocity impact [J]. Composite Structures, 2012, 94(9): 2902–2913. doi: 10.1016/j.compstruct.2012.03.039
    [6] 王晓宏, 张博明, 刘长喜, 等. 纤维缠绕复合材料压力容器渐进损伤分析 [J]. 计算力学学报, 2009, 26(3): 446–452.

    WANG X H, ZHANG B M, LIU C X, et al. Progressive failure analysis of composite overwrapped pressure vessels [J]. Chinese Journal of Computational Mechanics, 2009, 26(3): 446–452.
    [7] OKABE Y, TSUJI R, TAKEDA N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites [J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 59–65.
    [8] 何录菊, 马李. 复合材料压力容器输进损伤的模拟研究 [J]. 台州学院学报, 2011, 33(6): 36–41. doi: 10.3969/j.issn.1672-3708.2011.06.008

    HE L J, MA L. Study on simulation progressive damage of composite pressure vessel [J]. Journal of Taizhou University, 2011, 33(6): 36–41. doi: 10.3969/j.issn.1672-3708.2011.06.008
    [9] 饶辉, 许希武, 朱炜垚, 等. 复合材料加筋板低速冲击损伤的数值模拟 [J]. 复合材料学报, 2013, 30(4): 211–218.

    RAO H, XU X W, ZHU W Y, et al. Numerical simulation of low velocity impact damage on stiffened composite panels [J]. Acta Materiae Compositae Sinica, 2013, 30(4): 211–218.
    [10] SHIVAKUMAR K N, ELBER W, ILLG W. Prediction of impact force and duration due to low-velocity impact on circular composite laminates [J]. Journal of Applied Mechanics, 1985, 52(3): 674–680. doi: 10.1115/1.3169120
    [11] ZU L, XU H, ZHANG B, et al. Design and production of filament-wound composite square tubes [J]. Composite Structures, 2018, 191: 202–208. doi: 10.1016/j.compstruct.2018.02.069
    [12] ZU L, WANG J H, LI S X. Influence of fiber slippage coefficient distributions on the geometry and performance of composite pressure vessels [J]. Polymer Composites, 2016, 37: 315–321. doi: 10.1002/pc.23183
    [13] ZHANG B, XU H, ZU L, et al. Design of filament-wound composite elbows based on non-geodesic trajectories [J]. Composite Structures, 2018, 189: 635–640. doi: 10.1016/j.compstruct.2018.02.008
    [14] HAO J C, LENG J S, WEI Z. Non-destructive evaluation of composite pressure vessel by using FBG sensors [J]. Chinese Journal of Aeronautics, 2007, 20(2): 120–123.
    [15] LIU P F, ZHENG J Y. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics [J]. Materials Science and Engineering: A, 2008, 48(1/2): 5711–5717.
    [16] 王莉, 刘国强, 肖迎春. 基于代理模型的复合材料加筋壁板分层损伤定量监测方法 [J]. 复合材料学报, 2020, 37(2): 302–308.

    WANG L, LIU G Q, XIAO Y C. Quantitative monitoring method for delamination damage of stiffened composite panel based on surrogate model [J]. Acta Materiae Compositae Sinica, 2020, 37(2): 302–308.
    [17] KHECHAI A, TATI A, GUERIRA B, et al. Strength degradation and stress analysis of composite plates with circular, square and rectangular notches using digital image correlation [J]. Composite Structures, 2018, 185: 699–715. doi: 10.1016/j.compstruct.2017.11.060
    [18] ALSHAHRANI R F, MERAH N, KHAN A M A, et al. On the impact-induced damage in glass fiber reinforced epoxy pipes [J]. International Journal of Impact Engineering, 2016, 97: 57–65. doi: 10.1016/j.ijimpeng.2016.06.002
    [19] YANG B, HE L, GAO Y. Simulation on impact response of FMLs: effect of fiber stacking sequence, thickness, and incident angle [J]. Science and Engineering of Composite Materials, 2018, 25(3): 621–631. doi: 10.1515/secm-2016-0226
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  3531
  • HTML全文浏览量:  1323
  • PDF下载量:  29
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-02-14

目录

    /

    返回文章
    返回