新型仿竹薄壁圆管的设计与吸能特性分析

于鹏山 刘志芳 李世强

于鹏山, 刘志芳, 李世强. 新型仿竹薄壁圆管的设计与吸能特性分析[J]. 高压物理学报, 2021, 35(5): 054205. doi: 10.11858/gywlxb.20210710
引用本文: 于鹏山, 刘志芳, 李世强. 新型仿竹薄壁圆管的设计与吸能特性分析[J]. 高压物理学报, 2021, 35(5): 054205. doi: 10.11858/gywlxb.20210710
YU Pengshan, LIU Zhifang, LI Shiqiang. Design and Energy Absorption Characteristic Analysis of a New Bio-Bamboo Thin-Walled Circular Tube[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054205. doi: 10.11858/gywlxb.20210710
Citation: YU Pengshan, LIU Zhifang, LI Shiqiang. Design and Energy Absorption Characteristic Analysis of a New Bio-Bamboo Thin-Walled Circular Tube[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054205. doi: 10.11858/gywlxb.20210710

新型仿竹薄壁圆管的设计与吸能特性分析

doi: 10.11858/gywlxb.20210710
基金项目: 国家自然科学基金(11772216,12072219)
详细信息
    作者简介:

    于鹏山(1994-),男,硕士研究生,主要从事金属薄壁结构的耐撞性研究. E-mail:1850068840@qq.com

    通讯作者:

    刘志芳(1971-),女,博士,副教授,主要从事弹塑性力学研究. E-mail:liuzhifang@tyut.edu.cn

  • 中图分类号: O341

Design and Energy Absorption Characteristic Analysis of a New Bio-Bamboo Thin-Walled Circular Tube

  • 摘要: 受自然界毛竹微观结构的启发,在传统双圆管结构的基础上,在内、外圆管之间引入双菱形肋骨,设计了一种新型仿竹薄壁圆管。基于超折叠单元理论,建立了轴向压缩时仿竹薄壁圆管的理论分析模型。利用ABAQUS 有限元软件对新型仿竹薄壁圆管进行轴向压缩的数值模拟,分析了双菱形肋骨数、内管直径、壁厚等因素对新型仿竹薄壁管耐撞性和变形模式的影响,并与传统双圆管结构进行了对比。结果表明:理论预测与数值模拟结果吻合,平均压缩力和比吸能的误差均在10%以内。与传统双圆管相比,新型仿竹薄壁圆管的比吸能提高了83.61%,压缩力效率提高了198.65%。肋骨数对结构耐撞性能有显著影响,随着双菱形肋骨数目的增加,结构的比吸能逐渐增加,初始峰值力也随之提高;肋骨数较少时,结构出现局部屈曲变形,影响其吸能能力。内管直径越小,初始峰值力越高;内管直径越大,比吸能越小。

     

  • 图  仿生竹结构设计

    Figure  1.  Structural design of bionic bamboo

    图  RNL2BT仿竹薄壁圆管有限元模型

    Figure  2.  Finite element models of RNL2BT bionic tubes

    图  数值模拟与实验[12]结果对比

    Figure  3.  Comparison between numerical simulation and experiment results[12]

    图  简化超折叠单元模式:(a)拉伸单元,(b)弯曲塑性铰线,(c)基本折叠单元凸缘完全压缩

    Figure  4.  Schematic diagrams of the simplified super folding elements (SSFE): (a) extensional elements, (b) bending plastic hinge lines, (c) basic folding element with fully compressed flange

    图  结构基本单元分布与简化

    Figure  5.  Distribution and simplification of basic constitutive elements

    图  基本角单元

    Figure  6.  Basic angle element

    图  RNL2BT和TBCT的载荷-位移曲线

    Figure  7.  Load-displacement curves of RNL2BT and TBCT

    图  具有不同肋骨数的RNL2BT的耐撞性比较:(a)载荷-位移曲线,(b)R8L2BT和TBCT的载荷-位移曲线,(c)初始峰值力和比吸能,(d)压缩力效率

    Figure  8.  Crashworthiness comparison of RNL2BT with different number of ribs: (a) load-displacement curves, (b) load-displacement curves of R8L2BT and TBCT, (c) PCF and SEA, (d) compression force efficiency (CFE)

    图  RNL2BT仿竹薄壁圆管的变形模式(管质量为108.9 g)

    Figure  9.  Deformation modes of RNL2BT bionic-bamboo thin-walled circular tube (The mass of tube is 108.9 g.)

    图  10  不同内管直径和壁厚的R8L2BT的耐撞性比较: (a)初始峰值力,(b)平均压缩力,(c)比吸能,(d)压缩力效率

    Figure  10.  Crashworthiness comparison of R8L2BT with different inner circle diameters and wall thicknesses: (a) peak crushing force (PCF), (b) mean crushing force (MCF), (c) specific energy absorption (SEA), (d) crushing force efficiency (CFE)

    图  11  不同内管直径的R8L2BT的变形模式(t = 0.8 mm):(a)R8L2BT等效塑性应变d = 30 mm,(b) d = 10 mm,(c) d = 20 mm,(d) d = 30 mm,(e) d = 40 mm,(f) d = 50 mm

    Figure  11.  R8L2BT deformation modes with different inner tube diameters(t = 0.8 mm): (a) equivalent plastic strain nephogram of R8L2BT (d=30 mm), (b) d = 10 mm, (c) d = 20 mm,(d) d = 30 mm, (e) d = 40 mm, (f) d = 50 mm

    图  12  不同壁厚管的压缩响应

    Figure  12.  Compression responses of tubes with different wall thicknesses

    图  13  PCF与SEA的响应面

    Figure  13.  Response surfaces of PCF and SEA

    表  1  数值模拟与理论计算结果对比

    Table  1.   Comparison between numerical simulation and theoretical calculation results

    TypeMCFSEA
    Num./kNTheor./kNError/%Num./(J·g−1)Theor./(J·g−1)Error/%
    R4L2BT53.5952.59−1.8635.1434.47−1.88
    R6L2BT66.9666.49−0.7138.4238.15−0.69
    R8L2BT86.0480.51−6.3440.6938.07−6.33
    R10L2BT104.5295.54−8.5949.9945.69−8.59
    R12L2BT121.22115.45−4.7551.5449.08−4.75
    R14L2BT134.51124.51−7.4355.4251.77−6.57
    下载: 导出CSV

    表  2  R8L2BT与TBCT耐撞性比较

    Table  2.   Comparison of crashworthiness between R8L2BT and TBCT

    TypeMass/gEA/JSEA/(J·g−1)PCF/kNMCF/kNCFE/%t/mm
    R8L2BT119.85703.5247.6285.7677.9490.880.9
    TBCT119.83106.4125.9385.1825.9330.441.4
    下载: 导出CSV
  • [1] SUN X J, ZHANG H, MENG W J, et al. Primary resonance analysis and vibration suppression for the harmonically excited nonlinear suspension system using a pair of symmetric viscoelastic buffers [J]. Nonlinear Dynamics, 2018, 94: 1243–1265. doi: 10.1007/s11071-018-4421-9
    [2] XIE S C, WANG N, YANG W L, et al. Energy absorption performance of thin-walled metal plate due to upheaval deformation based on experiments and numerical simulation [J]. Thin-Walled Structures, 2018, 131: 258–273. doi: 10.1016/j.tws.2018.07.006
    [3] XU X, ZHANG Y, CHENG X, et al. Crushing behaviors of hierarchical sandwich-walled columns [J]. International Journal of Mechanical Sciences, 2019, 161/162: 105021. doi: 10.1016/j.ijmecsci.2019.105021
    [4] VINAYAGAR K, KUMAR A S. Crashworthiness analysis of double section bi-tubular thin-walled structures [J]. Thin Walled Structures, 2017, 112: 184–193. doi: 10.1016/j.tws.2016.12.008
    [5] 吴伟, 张辉, 曹美文, 等. 仿生BCC结构的准静态压缩数值模拟及吸能性 [J]. 高压物理学报, 2020, 34(6): 062402. doi: 10.11858/gywlxb.20200578

    WU W, ZHANG H, CAO M W, et al. Numerical simulation of quasi-static compression and snergy absorption of bionic BCC structure [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 062402. doi: 10.11858/gywlxb.20200578
    [6] ESTRADA Q, SZWEDOWICZ D, RODRIGUEZ-MENDEZ A, et al. Effect of radial clearance and holes as crush initiators on the crashworthiness performance of bi-tubular profiles [J]. Thin Walled Structures, 2019, 140: 43–59. doi: 10.1016/j.tws.2019.02.039
    [7] FAN Z, LU G, LIU K. Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes [J]. Engineering Structures, 2013, 55(4): 80–89.
    [8] 姚如洋, 赵振宇, 尹冠生, 等. 薄壁开孔圆管在轴向荷载作用下的理论研究 [J]. 振动与冲击, 2020, 39(2): 141–147.

    YAO R Y, ZHAO Z Y, YIN G S, et al. Theoretical study on thin-walled perforated circular tube under axial load [J]. Journal of Vibration and Shock, 2020, 39(2): 141–147.
    [9] SONG J, XU S, XU L, et al. Experimental study on the crashworthiness of bio-inspired aluminum foam-filled tubes under axial compression loading [J]. Thin-Walled Structures, 2020, 155: 106937. doi: 10.1016/j.tws.2020.106937
    [10] 杨欣, 范晓文, 许述财, 等. 仿虾螯结构薄壁管设计及耐撞性分析 [J]. 爆炸与冲击, 2020, 40(4): 59–69.

    YANG X, FAN X W, XU S C, et al. Design and crashworthiness analysis of thin-walled tubes with simulated shrimps [J]. Explosion and Shock Waves, 2020, 40(4): 59–69.
    [11] 闫栋, 王根伟, 宋辉, 等. 类向日葵夹芯圆柱壳径向冲击数值模拟 [J]. 高压物理学报, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858

    YAN D, WANG G W, SONG H, et al. Numerical simulation of radial impact on sunflower-like sandwich cylindrical shell [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858
    [12] FU J, LIU Q, LIU F K, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. doi: 10.1016/j.tws.2018.10.003
    [13] CHEN B C, ZOU M, LIU G M, et al. Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing [J]. International Journal of Impact Engineering, 2018, 115(5): 48–57.
    [14] CHEN W, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption [J]. Thin Walled Structures, 2001, 39(4): 287–306. doi: 10.1016/S0263-8231(01)00006-4
    [15] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. doi: 10.1115/1.3167137
    [16] TRAN T N, HOU S J, HAN X, et al. Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes [J]. Thin-Walled Structures, 2014, 82: 183–195.
    [17] TRAN T N, HOU S J, HAN X, et al. Crushing analysis and numerical optimization of angle element structures under axial impact loading [J]. Composite Structures, 2015, 119: 422–435. doi: 10.1016/j.compstruct.2014.09.019
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1988
  • HTML全文浏览量:  1066
  • PDF下载量:  76
出版历程
  • 收稿日期:  2021-01-19
  • 修回日期:  2021-02-04

目录

    /

    返回文章
    返回