考虑动力学扩散作用的煤系气储层渗透率模型

张宏学 刘卫群 李盼

张宏学, 刘卫群, 李盼. 考虑动力学扩散作用的煤系气储层渗透率模型[J]. 高压物理学报, 2021, 35(5): 055301. doi: 10.11858/gywlxb.20210709
引用本文: 张宏学, 刘卫群, 李盼. 考虑动力学扩散作用的煤系气储层渗透率模型[J]. 高压物理学报, 2021, 35(5): 055301. doi: 10.11858/gywlxb.20210709
ZHANG Hongxue, LIU Weiqun, LI Pan. Permeability Model of Coal Measure Gas Reservoirs Considering Dynamic Diffusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055301. doi: 10.11858/gywlxb.20210709
Citation: ZHANG Hongxue, LIU Weiqun, LI Pan. Permeability Model of Coal Measure Gas Reservoirs Considering Dynamic Diffusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055301. doi: 10.11858/gywlxb.20210709

考虑动力学扩散作用的煤系气储层渗透率模型

doi: 10.11858/gywlxb.20210709
基金项目: 安徽省教育厅科研基金(KJ2020A0329,KJ2016A207)
详细信息
    作者简介:

    张宏学(1982-),男,博士,副教授,主要从事裂隙岩体渗流研究. E-mail:hxzhang@aust.edu.cn

  • 中图分类号: O354.9; TE371

Permeability Model of Coal Measure Gas Reservoirs Considering Dynamic Diffusion

  • 摘要: 为了预测煤系气开采过程中储层渗透率的演化规律,考虑气体在基质中的动力学扩散作用,基于储层的应力-应变本构关系和渗透率-孔隙率的立方关系,提出了储层的有效应力-渗透率模型,分别建立了储层在常体积和单轴应变条件下的渗透率解析模型。利用现场和实验室测试的渗透率数据,探讨了两种模型的有效性。结果表明,与常体积条件下的渗透率模型和C-M模型相比,单轴应变条件下的渗透率模型能够较好地拟合现场和实验室的渗透率数据,建立渗透率模型须考虑气体在基质中的动力学扩散作用。研究了模型参数对渗透率的影响,结果表明模型参数对渗透率的演化规律以及反弹压力有显著的影响。

     

  • 图  双孔单渗模型

    Figure  1.  Dual-porosity and single-permeability model

    图  反弹压力的演化规律

    Figure  2.  Evolution of rebound pressure

    图  渗透率模型的有效性

    Figure  3.  Effectiveness of permeability model

    图  渗透率随基质压力(裂隙压力不变)的演化规律

    Figure  4.  Evolution of permeability with matrix pressure (fracture pressure is constant)

    图  渗透率随裂隙压力(基质压力不变)的演化规律

    Figure  5.  Evolution of permeability with fracture pressure (matrix pressure is constant)

    图  模型参数对渗透率的影响

    Figure  6.  Effects of model parameters on permeability

    表  1  渗透率数据[1516]

    Table  1.   Permeability data[1516]

    Field experimentLaboratory experiment
    Reservoir pressure/MPa$k/{k_{0}}$Reservoir pressure/MPa$k/{k_{0}}$
    0.107.300.3812.99
    0.356.620.6810.51
    0.795.651.393.93
    1.104.952.042.49
    1.384.253.061.68
    2.073.204.111.36
    2.762.455.141.20
    3.451.756.261.04
    4.141.35
    4.831.05
    5.521.02
    下载: 导出CSV

    表  2  模型参数[8, 16]

    Table  2.   Model parameter[8, 16]

    Fitting data$\;\mu $pf0/MPapL/MPa$\varepsilon _{\rm{L}} $Em/MPaa0/mmk0/md
    Field0.367.207.200.013 005 00052
    Laboratory0.306.204.160.010 753 00052
    下载: 导出CSV
  • [1] 秦勇. 中国煤系气共生成藏作用研究进展 [J]. 天然气工业, 2018, 38(4): 26–36.

    QIN Y. Research progress of symbiotic accumulation of coal measure gas in China [J]. Natural Gas Industry, 2018, 38(4): 26–36.
    [2] 李勇, 王延斌, 孟尚志, 等. 煤系非常规天然气合采地质基础理论进展及展望 [J]. 煤炭学报, 2020, 45(4): 1406–1418.

    LI Y, WANG Y B, MENG S Z, et al. Theoretical basis and prospect of coal measure unconventional natural gas co-production [J]. Journal of China Coal Society, 2020, 45(4): 1406–1418.
    [3] 曹毅民, 丁蓉, 赵启阳, 等. 煤层气可采储量计算方法的评价与应用 [J]. 天然气工业, 2020, 38(Suppl 1): 50–56.

    CAO Y M, DING R, ZHAO Q Y, et al. Evaluation and application of the calculation method of recoverable reserves of coalbed methane [J]. Natural Gas Industry, 2020, 38(Suppl 1): 50–56.
    [4] 张宏学, 刘卫群. 海陆过度相煤系页岩气的渗流特征 [J]. 高压物理学报, 2018, 32(5): 055901.

    ZHANG H X, LIU W Q. Seepage of marine-terrigenous facies coal measures shale [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055901.
    [5] 王红岩, 周尚文, 刘德勋, 等. 页岩气地质评价关键实验技术的进展与展望 [J]. 天然气工业, 2020, 40(6): 1–17.

    WANG H Y, ZHOU S W, LIU D X, et al. Progress and prospect of key experimental technologies for shale gas geological evaluation [J]. Natural Gas Industry, 2020, 40(6): 1–17.
    [6] PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds: a new model [J]. SPE Reservoir Evaluation and Engineering, 1998, 1(6): 539–544. doi: 10.2118/52607-PA
    [7] SHI J Q, DURUCAN S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery [J]. Transport in Porous Media, 2004, 56(1): 1–16. doi: 10.1023/B:TIPM.0000018398.19928.5a
    [8] CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams [J]. AAPG Bulletin, 2005, 89(9): 1181–1202. doi: 10.1306/05110504114
    [9] 张宏学, 刘卫群, 朱立. 页岩储层裂隙渗透率模型和试验研究 [J]. 岩土力学, 2015, 36(3): 719–729.

    ZHANG H X, LIU W Q, ZHU L. Fracture permeability model and experiments of shale gas reservoirs [J]. Rock and Soil Mechanics, 2015, 36(3): 719–729.
    [10] WU Y, LIU J S, ELSWORTH D, et al. Development of anisotropic permeability during coalbed methane production [J]. Journal of Natural Gas Science and Engineering, 2010, 2(4): 197–210. doi: 10.1016/j.jngse.2010.06.002
    [11] LIU T, LIN B Q, YANG W, et al. Coal permeability evolution and gas migration non-equilibrium state [J]. Transport in Porous Media, 2017, 118(3): 393–416. doi: 10.1007/s11242-017-0862-8
    [12] WEI Z J, ZHANG D X. Coupled fluid-flow and geomechanics for triple-porosity/dual-permeability modeling of coalbed methane recovery [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(8): 1242–1253. doi: 10.1016/j.ijrmms.2010.08.020
    [13] SANG G J, ELSWORTH D, MIAO X X, et al. Numerical study of a stress dependent triple porosity model for shale gas reservoirs accommodating gas diffusion in kerogen [J]. Journal of Natural Gas Science and Engineering, 2016, 32: 423–438. doi: 10.1016/j.jngse.2016.04.044
    [14] WANG G, WANG K, WANG S G, et al. An improved permeability evolution model and its application in fractured sorbing media [J]. Journal of Natural Gas Science and Engineering, 2018, 56: 222–232. doi: 10.1016/j.jngse.2018.05.038
    [15] SHI J Q, DURUCAN S. A model for changes in coalbed permeability during primary and enhanced methane recovery [J]. SPE Reservoir Evaluation and Engineering, 2005, 8(4): 291–299. doi: 10.2118/87230-PA
    [16] MITRA A, HARPALANI S, LIU S M. Laboratory measurement and modeling of coal permeability with continued methane production: Part 1-laboratory results [J]. Fuel, 2012, 94(4): 110–116.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1912
  • HTML全文浏览量:  726
  • PDF下载量:  16
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-03-24

目录

    /

    返回文章
    返回