冲击波作用下引信传爆序列殉爆的数值模拟

肖向东 肖有才 蒋海燕 范晨阳 王志军

肖向东, 肖有才, 蒋海燕, 范晨阳, 王志军. 冲击波作用下引信传爆序列殉爆的数值模拟[J]. 高压物理学报, 2021, 35(5): 054202. doi: 10.11858/gywlxb.20210706
引用本文: 肖向东, 肖有才, 蒋海燕, 范晨阳, 王志军. 冲击波作用下引信传爆序列殉爆的数值模拟[J]. 高压物理学报, 2021, 35(5): 054202. doi: 10.11858/gywlxb.20210706
XIAO Xiangdong, XIAO Youcai, JIANG Haiyan, FAN Chenyang, WANG Zhijun. Numerical Simulation and Analysis of Fuze Explosive Trains under Shock Waves[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054202. doi: 10.11858/gywlxb.20210706
Citation: XIAO Xiangdong, XIAO Youcai, JIANG Haiyan, FAN Chenyang, WANG Zhijun. Numerical Simulation and Analysis of Fuze Explosive Trains under Shock Waves[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054202. doi: 10.11858/gywlxb.20210706

冲击波作用下引信传爆序列殉爆的数值模拟

doi: 10.11858/gywlxb.20210706
基金项目: 国家自然科学基金(11802273);山西省青年科学基金(201901D211279);国防科工局技术基础科研项目(JCKY2XXXXX7B0XX)
详细信息
    作者简介:

    肖向东(1994-),男,硕士研究生,主要从事爆炸与冲击相关问题研究. E-mail:theexpectedfuture@126.com

    通讯作者:

    肖有才(1988-),男,博士,副教授,主要从事材料动态力学、损伤力学、爆炸与冲击等相关研究. E-mail:xiaoyoucai@nuc.edu.cn

  • 中图分类号: O381

Numerical Simulation and Analysis of Fuze Explosive Trains under Shock Waves

  • 摘要: 为研究不敏感弹药或不敏感引信在战备和后勤贮存过程中的殉爆现象,利用装填JH-14C传爆药的某引信传爆序列,开展了冲击波作用下的殉爆数值模拟研究,获得了引信传爆序列爆轰波成长历程、传播规律以及临界殉爆距离,建立了冲击波能量判据,并给出了殉爆条件。结果表明:冲击波由传爆药左上向右下传播,在最右下端面处起爆,引信传爆序列的临界殉爆距离为9.7 mm;当作用冲击波能量大于临界起爆能量时,引信传爆序列发生殉爆。

     

  • 图  结构简图

    Figure  1.  Structure diagram

    图  位置分布与有限元计算模型

    Figure  2.  Location distribution and finite element model

    图  有限元模型与实验装置

    Figure  3.  Finite element model and experimental apparatus

    图  见证板变形

    Figure  4.  Witness plate deformation

    图  凹坑深度

    Figure  5.  Cave depths curve

    图  距离9.0 mm 时A1殉爆压力云图

    Figure  6.  Pressure nephogram in the A1 at 9.0 mm

    图  距离9.7 mm时不同时刻A3中传爆药的变形和等压线

    Figure  7.  Deformation and isobaric lines of the explosive in the A3 at different times from 9.7 mm

    图  距离为9.7 mm时A1和A3中的压力曲线

    Figure  8.  Column of pressure curves in the A1 and A3 at 9.7 mm

    图  A1中的压力曲线

    Figure  9.  Column of pressure curves in the A1

    图  10  引信传爆序列中高斯点能量

    Figure  10.  Gauss points energy of the fuze explosive train

    表  1  Comp B炸药的High Explosive Burn本构模型参数和JWL状态方程参数[910]

    Table  1.   High Explosive Burn constitutive model parameters and JWL equation parameters for Comp B[910]

    $\;\rho $/(g·cm−3)S1$\gamma $0A0/GPaB0/GPaR1R2$\omega $p0/GPa
    1.7170.7980.33 524.237674.21.10.348.5
    下载: 导出CSV

    表  2  JH-14C的Lee-Tarve参数[11]

    Table  2.   Lee-Tarve parameters of JH-14C[11]

    JWL equation parameters for unreacted explosive and reaction product
    StateA0/GPaB0/GPaR1R2$\omega $G/GPa$\sigma_{\rm{y}}$/MPa$\;\rho $/(g·cm−3)p0/GPaD/(km·s−1)p/GPa
    Unreacted
    explosive
    7 781.0−5.3111.31.130.89383.5 2001.65
    Reaction
    product
    592.710.51 4.41.200.330 0 11.568.1927.67
    Rate of reaction
    a b c d e g x y z
    0.02 0.667 0.667 0.350 0.667 0.667 7.0 2.0 3.0
    Figmax FG1max FG2min I/μs−1 G1/(MPa·μs−1) G2/(MPa·μs−1)
    0.022 1 0 4 × 106 1.4 × 107 7 × 108
    下载: 导出CSV

    表  3  紫铜、2024铝与4340钢的Johnson-Cook本构模型参数[1213]

    Table  3.   Johnson-Cook constitutive model parameters for copper, 2024 aluminum and 4340 steel[1213]

    Material$\;\rho $/(g·cm−3)G/GPaA/MPaB/MPancmTm/KTr/KCp/(J·kg−1·K−1)
    Copper8.96046.0 902920.310.0251.091356300383
    2024 aluminum2.78528.62654260.340.0151.00 445300875
    4340 steel7.83077.07925100.260.0141.031793300477
    下载: 导出CSV

    表  4  紫铜、2024铝、4340钢的Grüneisen状态方程参数[1213]

    Table  4.   Grüneisen equation of state parameters of copper, 2024 aluminum and 4340 steel[1213]

    MaterialC/(km·s−1)S1$\gamma $0
    Copper3.9401.4891.99
    2024 aluminum5.3281.3382.00
    4340 steel4.5691.4902.17
    下载: 导出CSV

    表  5  不同距离下殉爆数值模拟结果

    Table  5.   Numerical simulation results at different distances

    Distance/mmNumerical simulation results
    A1A2A3
    8.5DetonationDetonationDetonation
    9.0DetonationDetonationDetonation
    9.7DetonationDetonationDetonation
    10.0Partial reactionPartial reactionNo detonation
    10.3No detonationNo detonationNo detonation
    10.5No detonationNo detonationNo detonation
    下载: 导出CSV
  • [1] WANG F J, CHEN H M, MA C, et al. Construction of backscattering echo caused by cloud in laser fuze [J]. Optik, 2018, 171: 153–160. doi: 10.1016/j.ijleo.2018.06.028
    [2] SHARP A, ANDRADE J, RUFFINI N. Design for reliability for the high reliability fuze [J]. Reliability Engineering & System Safety, 2018, 181: 54–61.
    [3] 韩炎晖, 娄文忠, 冯跃, 等. 慢速烤燃环境下引信热响应特性测试与仿真 [J]. 兵工学报, 2019, 40(5): 946–953.

    HAN Y H, LUO W Z, YUE F, et al. Measurement and simulation of thermal response characteristics of fuze in slow cook-off test [J]. Acta Armamentarii, 2019, 40(5): 946–953.
    [4] KIM B, PARK J, LEE K C, et al. A reactive flow model for heavily aluminized cyclotrimethylene-trinitramine [J]. Journal of Applied Physics, 2014, 116(2): 023512. doi: 10.1063/1.4887811
    [5] KIM B, KIM M, SUN T, et al. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations [J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5491–5502. doi: 10.1007/s12206-016-1117-2
    [6] MOSTAFA H E, MEKKY W F, EL-DAKHAKHNI W W. Sympathetic detonation wave attenuation using polyurethane foam [J]. Journal of Materials in Civil Engineering, 2014, 26(8): 04014046. doi: 10.1061/(ASCE)MT.1943-5533.0000934
    [7] 陈朗, 王晨, 鲁建英, 等. 炸药殉爆实验和数值模拟 [J]. 北京理工大学学报, 2009, 29(6): 497–500, 524.

    CHEN L, WANG C, LU J Y, et al. Experiment & simulation of sympathetic detonation tests [J]. Transactions of Beijing Institute of Technology, 2009, 29(6): 497–500, 524.
    [8] CHEN L, WANG C, FENG C G, et al. Study on random initiation phenomenon for sympathetic detonation of explosive [J]. Defence Technology, 2013, 9(4): 224–228. doi: 10.1016/j.dt.2013.12.002
    [9] 刘鹏飞. 破片特性对冲击起爆B炸药比动能阈值的影响[D]. 太原: 中北大学, 2017.

    LIU P F. Influence of fragment characteristics on the threshold specific kinetic energy of impacting on covered Comp B [D]. Taiyuan: North University of China, 2017.
    [10] SCHWER L E. Impact and detonation of COMP-B: an example using the LS-DYNA EOS: ignition and growth of reaction in high explosives [C]//12th International LS-DYNA User Conference. Detroit, USA: 2012.
    [11] 李硕, 袁俊明, 刘玉存, 等. 聚黑-14C 的传爆装置冲击起爆实验及数值模拟 [J]. 火炸药学报, 2016, 39(6): 63–68, 79.

    LI S, YUAN J M, LIU Y C, et al. Experiment and numerical simulation of shock initiation of JH-14C detonation device [J]. Chinese Journal of Explosive & Propellants, 2016, 39(6): 63–68, 79.
    [12] BUYUK M, KURTARAN H, MARZOUGUI D, et al. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology [J]. International Journal of Impact Engineering, 2008, 35(12): 1449–1458. doi: 10.1016/j.ijimpeng.2008.07.057
    [13] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005.

    SHI D Y, LI Y C, ZHANG S M. Explicit dynamics based on ANSYS/LS-DYNA8.1 force analysis [M]. Beijing: Tsinghua University Press, 2009.
    [14] 袁俊明, 李硕, 刘玉存, 等. 聚奥-9C装药的传爆管殉爆 [J]. 爆炸与冲击, 2018, 38(3): 632–638.

    YUAN J M, LI S, LIU Y C, et al. Sympathetic detonation of booster pipe with JO-9C charge [J]. Explosion and Shock Waves, 2018, 38(3): 632–638.
    [15] FOAN G C M, GOLEY G D. Shock initiation in gap test configurations [C]//7th Symposium on Detonation. Annapolis, USA: Naval Surface Weapons Center, 1981.
    [16] 王泽溥, 郑志良. 爆炸及其防护[M]. 北京: 兵器工业出版社, 2008.

    WANG Z P, ZHENG Z L. Explosion and protection [M]. Beijing: Ordnance Industry Press, 2008.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  1430
  • HTML全文浏览量:  618
  • PDF下载量:  40
出版历程
  • 收稿日期:  2021-01-10
  • 修回日期:  2021-02-02

目录

    /

    返回文章
    返回