截卵形头部平台直径对初始侵彻弹道偏转的影响

张丁山 谷鸿平 徐笑 张博 吕永柱

张丁山, 谷鸿平, 徐笑, 张博, 吕永柱. 截卵形头部平台直径对初始侵彻弹道偏转的影响[J]. 高压物理学报, 2021, 35(5): 055102. doi: 10.11858/gywlxb.20200655
引用本文: 张丁山, 谷鸿平, 徐笑, 张博, 吕永柱. 截卵形头部平台直径对初始侵彻弹道偏转的影响[J]. 高压物理学报, 2021, 35(5): 055102. doi: 10.11858/gywlxb.20200655
ZHANG Dingshan, GU Hongping, XU Xiao, ZHANG Bo, LÜ Yongzhu. Effects of Truncated Ovate Nose Diameter of the Penetration Warhead on the Ballistic Deflection[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055102. doi: 10.11858/gywlxb.20200655
Citation: ZHANG Dingshan, GU Hongping, XU Xiao, ZHANG Bo, LÜ Yongzhu. Effects of Truncated Ovate Nose Diameter of the Penetration Warhead on the Ballistic Deflection[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055102. doi: 10.11858/gywlxb.20200655

截卵形头部平台直径对初始侵彻弹道偏转的影响

doi: 10.11858/gywlxb.20200655
详细信息
    作者简介:

    张丁山(1984-),男,博士,研究员,主要从事侵彻战斗部技术研究. E-mail:dingshan19840103@sohu.com

  • 中图分类号: TJ55; O385

Effects of Truncated Ovate Nose Diameter of the Penetration Warhead on the Ballistic Deflection

  • 摘要: 针对截卵形头部弹体斜侵彻靶标时弹道发生初始偏转的问题,建立了分析截卵平台直径对初始弹道偏转影响的理论和数值仿真计算模型,计算了相同侵彻条件下不同截卵平台直径时,头部侵彻产生的偏转函数和偏转角速度。结果表明:截卵平台头部侵彻产生的偏转力矩会减小弹轴与靶标法线之间的夹角,且随着截卵平台直径的增大,偏转力矩增大,偏转角速度增大,当截卵平台直径增大到1.5倍时,偏转力矩增大到约1.2倍,当截卵平台直径增大到2.0倍时,偏转力矩增大到约2倍;相同截卵平台直径下,随着头部形状系数的减小,偏转力矩和偏转角速度增大。

     

  • 图  侵彻靶标示意图

    Figure  1.  Schematic of the warhead penetrating a target

    图  不同工况下的f1(d1, d2)曲线

    Figure  2.  Curves of f1(d1, d2) under different conditions

    图  不同工况下的f2(d1, d2)曲线

    Figure  3.  Curves of f2(d1, d2) under different conditions

    图  侵彻试验结果

    Figure  4.  Result of penetration test

    图  弹道偏转仿真计算

    Figure  5.  Simulation result of ballistic deflection after penetration

    图  侵彻速度曲线

    Figure  6.  Curve of velocity during penetration

    图  仿真计算模型

    Figure  7.  Numerical simulation model

    图  不同截卵平台直径下的偏转角速度曲线

    Figure  8.  Curves of deflection angular velocity with different truncated ovate nose diameter

    图  不同头部形状系数下的偏转角速度曲线

    Figure  9.  Curves of deflection angular velocity with different head shape coefficient

    表  1  计算工况

    Table  1.   Conditions of calculation

    Case No.$\theta $/(°)$\varphi $/(°)Case No.$\theta $/(°)$\varphi $/(°)
    1251053510
    2251563515
    3252073520
    4253083530
    下载: 导出CSV

    表  2  壳体材料特性参数[11]

    Table  2.   Material parameters of warhead shell[11]

    $\;\rho $/(g·cm−3)E/GPa$\;\mu$$\sigma $/MPaEt/MPa$\;\beta$fs
    7.852100.21900010.8
    下载: 导出CSV

    表  3  混凝土JHC本构模型材料特性参数[11]

    Table  3.   Material parameters ofJHC constitutive model of concrete[11]

    $\rho $/(g·cm−3)G/GPaABCNfc/MPa
    2.4411.1470.791.60.0070.6140
    T/MPa${\dot \varepsilon }$0/s−1${\sigma {_{ {\rm{fmin} } }} }$Sfmaxpc/MPa${\;\mu {_{\rm c}} }$pL/MPa
    3.2810.0179.340.008800
    ${\mu {_{\rm{L} }} }$D1D2K1/GPaK2/GPaK3/GPa${f }$s
    0.1160.04185−1712080.1
    下载: 导出CSV

    表  4  仿真算例参数

    Table  4.   Parameters of simulation examples

    CaseLp/mmdp/mmmp/kg$\theta $/(°)d/mmS/mmIx/(kg·m2)Iy/(kg·m2)Iz/(kg·m2)
    A1534.43004002540828.55.6380.5280.52
    A11534.43004003540828.15.6480.6080.60
    B1535.33004002560828.95.6380.3980.39
    C1532.03004002580828.95.6479.8579.85
    下载: 导出CSV
  • [1] 刘坚成, 黄风雷, 皮爱国, 等. 异型头部弹体增强侵彻性能机理研究 [J]. 爆炸与冲击, 2014, 34(4): 409–414. doi: 10.11883/1001-1455(2014)04-0409-06

    LIU J C, HUANG F L, PI A G, et al. On enhanced penetration performance of modified nose projectiles [J]. Explosion and Shock Waves, 2014, 34(4): 409–414. doi: 10.11883/1001-1455(2014)04-0409-06
    [2] 彭永, 方秦, 吴昊, 等. 不同头部形状弹体侵彻混凝土靶体的终点弹道参数分析 [J]. 兵工学报, 2014, 35(Suppl 2): 128–134.

    PENG Y, FANG Q, WU H, et al. Theoretical analyses for terminal ballistic of the projectiles with different nose geometries penetrating into concrete targets [J]. Acta Armamentarii, 2014, 35(Suppl 2): 128–134.
    [3] 葛超, 董永香, 陆志超, 等. 弹丸头部对斜侵彻弹道偏转影响研究 [J]. 兵工学报, 2015, 36(2): 255–262. doi: 10.3969/j.issn.1000-1093.2015.02.010

    GE C, DONG Y X, LU Z C, et al. Ballistic deflection on oblique penetration of projectiles with different noses [J]. Acta Armamentarii, 2015, 36(2): 255–262. doi: 10.3969/j.issn.1000-1093.2015.02.010
    [4] 贺登高, 贺虎成. 基于Teland模型的截卵形弹丸侵彻混凝土计算分析 [J]. 兵器材料科学与工程, 2010, 33(5): 78–80. doi: 10.3969/j.issn.1004-244X.2010.05.021

    HE D G, HE H C. Calculation and analysis of rigid truncated-ogive-nosed projectile penetrating into concrete based on Teland force model [J]. Ordnance Material Science and Engineering, 2010, 33(5): 78–80. doi: 10.3969/j.issn.1004-244X.2010.05.021
    [5] 展婷变, 吕淑芳, 黄德雨. 截卵形弹体正侵彻加强筋结构靶的理论分析 [J]. 弹道学报, 2012, 24(1): 52–57. doi: 10.3969/j.issn.1004-499X.2012.01.011

    ZHAN T B, LÜ S F, HUANG D Y. Theoretical analysis on normal penetration of truncated oval-nosed projectile into stiffened plate [J]. Journal of Ballistics, 2012, 24(1): 52–57. doi: 10.3969/j.issn.1004-499X.2012.01.011
    [6] 杨华伟, 王志华, 晋小超. 高速侵彻混凝土弹体在横向非对称作用下的动态响应 [J]. 高压物理学报, 2017, 31(1): 73–80. doi: 10.11858/gywlxb.2017.01.011

    YANG H W, WANG Z H, JIN X C. Dynamic response of high-speed projectiles penetrating into concrete target by asymmetric load [J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 73–80. doi: 10.11858/gywlxb.2017.01.011
    [7] 郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. doi: 10.11883/1001-1455(2017)04-0727-07

    GUO Z T, ZHANG W, GUO Z, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. doi: 10.11883/1001-1455(2017)04-0727-07
    [8] 吴昊, 方秦, 龚自明. 考虑刚性弹弹头形状的混凝土(岩石)靶体侵彻深度半理论分析 [J]. 爆炸与冲击, 2012, 32(6): 573–580. doi: 10.11883/1001-1455(2012)06-0573-08

    WU H, FANG Q, GONG Z M. Semi-theoretical analyses for penetration depth of rigid projectiles with different nose geometries into concrete (rock) targets [J]. Explosion and Shock Waves, 2012, 32(6): 573–580. doi: 10.11883/1001-1455(2012)06-0573-08
    [9] 赵军, 陈小伟, 金丰年, 等. 考虑头形磨损变化的动能弹侵彻深度研究 [J]. 力学学报, 2010, 42(2): 212–218. doi: 10.6052/0459-1879-2010-2-2009-009

    ZHAO J, CHEN X W, JIN F N, et al. Studying on the penetration depth of penetrator with including the effect of mass abrasion [J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 212–218. doi: 10.6052/0459-1879-2010-2-2009-009
    [10] 邓佳杰, 张先锋, 葛贤坤, 等. 基于局部相互作用理论的侵彻弹头部形状优化及仿真 [J]. 爆炸与冲击, 2017, 37(4): 611–620. doi: 10.11883/1001-1455(2017)04-0611-10

    DENG J J, ZHANG X F, GE X K, et al. Nose-shape optimization and simulation of projectiles penetrating into concrete target based on local interaction theory [J]. Explosion and Shock Waves, 2017, 37(4): 611–620. doi: 10.11883/1001-1455(2017)04-0611-10
    [11] 张丁山, 谷鸿平, 吕永柱, 等. 战斗部后端盖结构强度的数值仿真及应力波分析方法 [J]. 探测与控制学报, 2018, 40(5): 21–25.

    ZHANG D S, GU H P, LÜ Y Z, et al. Numerical simulation of structure strength calculation and stress waves analysis [J]. Journal of Detection and Control, 2018, 40(5): 21–25.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  2706
  • HTML全文浏览量:  860
  • PDF下载量:  27
出版历程
  • 收稿日期:  2020-12-13
  • 修回日期:  2021-03-27

目录

    /

    返回文章
    返回