循环爆炸作用下地下洞室的动态响应及损伤累积

曹安生 王光勇 顿志林 任连伟 孙晓旺

曹安生, 王光勇, 顿志林, 任连伟, 孙晓旺. 循环爆炸作用下地下洞室的动态响应及损伤累积[J]. 高压物理学报, 2021, 35(2): 025203. doi: 10.11858/gywlxb.20200612
引用本文: 曹安生, 王光勇, 顿志林, 任连伟, 孙晓旺. 循环爆炸作用下地下洞室的动态响应及损伤累积[J]. 高压物理学报, 2021, 35(2): 025203. doi: 10.11858/gywlxb.20200612
CAO Ansheng, WANG Guangyong, DUN Zhilin, REN Lianwei, SUN Xiaowang. Dynamic Responses and Cumulative Damage of the Underground Cavern under Cyclic Explosion[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 025203. doi: 10.11858/gywlxb.20200612
Citation: CAO Ansheng, WANG Guangyong, DUN Zhilin, REN Lianwei, SUN Xiaowang. Dynamic Responses and Cumulative Damage of the Underground Cavern under Cyclic Explosion[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 025203. doi: 10.11858/gywlxb.20200612

循环爆炸作用下地下洞室的动态响应及损伤累积

doi: 10.11858/gywlxb.20200612
基金项目: 国家自然科学基金-山西煤基低碳联合基金重点项目(U1810203)
详细信息
    作者简介:

    曹安生(1993-),男,硕士研究生,主要从事爆炸与冲击动力学研究. E-mail:caoansheng1993@163.com

    通讯作者:

    王光勇(1977-),男,博士,副教授,主要从事岩土工程动载试验研究. E-mail:wgy2013@mail.ustc.edu.cn

  • 中图分类号: O383.2; TU457

Dynamic Responses and Cumulative Damage of the Underground Cavern under Cyclic Explosion

  • 摘要: 为研究循环爆炸对地下洞室的影响,基于相似模型试验,采用通用有限元软件ABAQUS对比研究了洞室拱顶高水平单次爆炸和低水平10次循环爆炸作用下地下洞室围岩的应力波衰减规律、损伤累积规律及洞壁位移和环向应变分布特征。结果表明:循环爆炸中,洞室围岩的应力波衰减速度随着爆炸次数的增加先减小后增大。单次爆炸中,洞壁环向峰值应变从拱顶至直墙脚由拉应变转为压应变;循环爆炸中,随着爆炸次数的增加,拱顶环向峰值应变由压应变转为拉应变。爆炸荷载总水平相同时,低水平循环爆炸中洞室围岩的损伤面积和程度比高水平单次爆炸大。循环爆炸中,围岩的损伤累积呈现不可逆的逐级增加趋势,且累积损伤和爆炸次数之间呈明显的非线性关系。

     

  • 图  地下洞室模型 (单位:厘米)

    Figure  1.  Model diagram of the underground cavern (Unit: cm)

    图  爆炸荷载时程曲线

    Figure  2.  Explosion loading-time history curve

    图  单次爆炸下测点的应力时程曲线对比

    Figure  3.  Comparison of the stress time curves of the measuring points of single explosion

    图  压应力峰值-比例距离拟合曲线

    Figure  4.  Fitting curves of the peak pressure and the scaled distance

    图  循环爆炸模型中测点的应力-时程曲线

    Figure  5.  Stress-time curves of the measuringpoints of cyclic explosion

    图  压应力峰值-爆心距拟合曲线

    Figure  6.  Fitting curves of the peak pressure and the distance from the explosion source

    图  U1U3测点的位移时程曲线

    Figure  7.  Displacement-time curves of U1U3

    图  应变测点布置

    Figure  8.  Arrangement of strain measuring points

    图  单次爆炸时洞壁的环向应变峰值(单位:10–6)

    Figure  9.  Peak circumferential strain distribution of the cavern wall under single explosion (Unit: 10–6)

    图  10  循环爆炸时洞壁的环向应变峰值(单位:10–6

    Figure  10.  Peak circumferential strain distribution of the cavern wall under cyclic explosion (Unit: 10–6)

    图  11  循环爆炸作用下洞室的损伤分布

    Figure  11.  Damage distribution of underground cavern under cyclic explosion

    图  12  单次爆炸洞室的损伤分布

    Figure  12.  Damage distribution of the underground cavern under single explosion

    图  13  洞室最大受拉累积损伤面积

    Figure  13.  The maximum tensile cumulative damage area of the underground cavern

    图  14  单次爆炸下各测点的损伤时程曲线

    Figure  14.  Damage time curves of the measuring points under single explosion

    图  15  循环爆炸下各测点的损伤时程曲线

    Figure  15.  Damage time curves of the measuring points under cyclic explosion

    图  16  洞室围岩的损伤累积和爆炸次数拟合曲线

    Figure  16.  Fitting curves of the cumulative damage of the surrounding rock and explosion times

    表  1  CDP模型相关参数

    Table  1.   Parameters of the CDP model

    Density of concrete/(kg·m−3)E/GPa$\;\mu $Dilation angle /(°)Eccentricity${{{\sigma _{{\rm{b}}0}}} / {{\sigma _{{\rm{c}}0}}}}$KcViscosity parameter
    18002.030.16250.11.160.66670
    下载: 导出CSV
  • [1] 孙钧. 国内外城市地下空间资源开发利用的发展和问题 [J]. 隧道建设, 2019, 39(5): 699–709.

    SUN J. Development and some issues on exploitation and utilization of urban underground space in China and abroad [J]. Tunnel Construction, 2019, 39(5): 699–709.
    [2] CLANCY T. Fighter wing [M]. Harper Collins: London, UK, 1995: 154-156.
    [3] RAMULU M, CHAKRABORTY A K, SITHARAMT G. Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project-a case study [J]. Tunnelling and Underground Space Technology, 2009, 24(2): 208–221. doi: 10.1016/j.tust.2008.08.002
    [4] 章毅, 方秦, 陈力, 等. 多次爆炸荷载作用下梁的抗爆性能分析 [J]. 兵工学报, 2009, 30(Suppl 2): 182–187.

    ZHANG Y, FANG Q, CHEN L, et al. Blast-resistant properties of reinforced concrete and steel beams subjected to multiple blast loads [J]. Acta Armamentarii, 2009, 30(Suppl 2): 182–187.
    [5] 张斐, 张春辉, 张磊, 等. 多次水下爆炸作用下钢板与焊接钢板冲击损伤特性 [J]. 振动与冲击, 2020, 39(7): 196–201.

    ZHANG F, ZHANG C H, ZHANG L, et al. Impact damage of steel plate and welding steel plate under multiple underwater explosions [J]. Journal of Vibration and Shock, 2020, 39(7): 196–201.
    [6] CHU H B, YANG X L, LI S J, et al. Experimental study on the blasting-vibration safety standard for young concrete based on the damage accumulation effect [J]. Construction and Building Materials, 2019, 217(30): 20–27.
    [7] 杨建华, 吴泽南, 姚池, 等. 地下洞室爆破开挖诱发围岩损伤特性及PPV阈值研究 [J]. 振动与冲击, 2019, 38(2): 131–139.

    YANG J H, WU Z N, YAO C, et al. Characteristics and PPV thresholds of rock damages under underground blasting excavation [J]. Journal of Vibration and Shock, 2019, 38(2): 131–139.
    [8] 闫长斌, 徐国元, 杨飞. 爆破动荷载作用下围岩累积损伤效应声波测试研究 [J]. 岩土工程学报, 2007(1): 88–93.

    YAN C B, XU G Y, YANG F. Measurement of sound waves to study cumulative damage effect on surrounding rock under blasting load [J]. Chinese Journal of Geotechnical Engineering, 2007(1): 88–93.
    [9] 颜峰, 姜福兴. 爆炸冲击载荷作用下岩石的损伤实验 [J]. 爆炸与冲击, 2009, 29(3): 275–280.

    YAN F, JIANG F X. Experiment on rock damage under blasting load [J]. Explosion and Shock Waves, 2009, 29(3): 275–280.
    [10] 潘城, 赵光明, 孟祥瑞. 爆炸荷载作用下围岩累积损伤效应的数值分析 [J]. 爆破, 2016, 33(1): 30–33.

    PAN C, ZHAO G M, MENG X R. Numerical analysis of surrounding rock cumulative damage under explosion loading [J]. Blasting, 2016, 33(1): 30–33.
    [11] 李允忠, 王志亮, 黄佑鹏, 等. 循环爆破载荷下岩石累积损伤效应研究 [J]. 爆破, 2019, 36(2): 47–53.

    LI Y Z, WANG Z L, HUANG Y P, et al. Numerical study of cumulative damage effect of rock under cyclic blast loading [J]. Blasting, 2019, 36(2): 47–53.
    [12] 顾金才, 陈安敏, 徐景茂, 等. 在爆炸荷载条件下锚固洞室破坏形态对比试验研究 [J]. 岩石力学与工程学报, 2008, 27(7): 1315–1320.

    GU J C, CHEN A M, XU J M, et al. Model test study of failure patterns of anchored tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1315–1320.
    [13] CHANG X, WANG G Y, TANG C N, et al. Dynamic behavior of cement-mortar cavern reinforced by bars [J]. Engineering Failure Analysis, 2015, 55: 343–354. doi: 10.1016/j.engfailanal.2015.07.020
    [14] 王光勇, 曹安生, 余锐, 等. 顶爆和拱腰侧爆同时作用下锚固洞室的动态响应 [J]. 高压物理学报, 2020, 34(2): 025202.

    WANG G Y, CAO A S, YU R, et al. Dynamic response of anchorage chamber under simultaneous explosion load from top and side of arch [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025202.
    [15] 王光勇, 顾金才, 陈安敏, 等. 拱顶端部加密锚杆支护洞室抗爆加固效果模型试验研究 [J]. 岩土工程学报, 2009, 31(3): 378–383.

    WANG G Y, GU J C, CHEN A M, et al. Model tests on anti-explosion anchoring effect of tunnels reinforced by dense bolts at arch top [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 378–383.
    [16] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892–900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
    [17] 美国陆军工程兵水道试验站. 常规武器防护设计原理[M]. 南京: 解放军工程兵工程学院, 1997: 40−66.

    US Army Engineers Waterways Experimental Station. Fundamental of protective design for conventional weapons [M]. Nanjing: PLA Engineering College, 1997: 40−66.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  5448
  • HTML全文浏览量:  1905
  • PDF下载量:  30
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2020-09-09

目录

    /

    返回文章
    返回