水泥砂浆抗弹性能研究

苗春贺 陈丽娜 单俊芳 王鹏飞 徐松林

苗春贺, 陈丽娜, 单俊芳, 王鹏飞, 徐松林. 水泥砂浆抗弹性能研究[J]. 高压物理学报, 2021, 35(2): 024205. doi: 10.11858/gywlxb.20200609
引用本文: 苗春贺, 陈丽娜, 单俊芳, 王鹏飞, 徐松林. 水泥砂浆抗弹性能研究[J]. 高压物理学报, 2021, 35(2): 024205. doi: 10.11858/gywlxb.20200609
MIAO Chunhe, CHEN Lina, SHAN Junfang, WANG Pengfei, XU Songlin. Research on the Ballistic Performance of Cement Mortar[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024205. doi: 10.11858/gywlxb.20200609
Citation: MIAO Chunhe, CHEN Lina, SHAN Junfang, WANG Pengfei, XU Songlin. Research on the Ballistic Performance of Cement Mortar[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024205. doi: 10.11858/gywlxb.20200609

水泥砂浆抗弹性能研究

doi: 10.11858/gywlxb.20200609
基金项目: 高压物理与地震科技联合实验室开放基金(2019HPPES01);国家自然科学基金(11672286,11602267);中石油-中科院战略合作重大项目(2015A-4812)
详细信息
    作者简介:

    苗春贺(1994-),男,博士研究生,主要从事冲击作用下脆性材料的损伤与破碎研究. E-mail:mch@mail.ustc.edu.cn

    通讯作者:

    徐松林(1971-),男,博士,研究员,博士生导师,主要从事材料在冲击下的动态响应研究.E-mail:slxu99@ustc.edu.cn

  • 中图分类号: O347; O385

Research on the Ballistic Performance of Cement Mortar

  • 摘要: 对于水泥砂浆的抗弹性能研究,目前很少考虑靶体所处的应力状态,为此基于自研的真三轴静载混凝土侵彻实验装置和水泥砂浆抗弹性能实验结果,讨论了水泥砂浆在不同应力状态下的开坑深度和开坑阻力。应用侵彻深度的经验公式和基于HJC模型的有限元数值计算方法,对比分析了水泥砂浆侵彻实验,结果表明,对于低速冲击过程,采用UMIST公式和HJC模型的数值分析对开坑深度的预测较为有效。应力状态对开坑深度有明显的影响,即随着侧限增加,水泥砂浆的三轴强度提高,弹丸的开坑深度减小。应用基于HJC模型的数值分析方法,研究了弹丸开坑过程中弹体内的加速度波形和y轴支撑杆上的波形,结果表明:弹丸开坑过程对两种波形都有影响,其中y轴支撑杆上的波形可以更好地反映开坑过程。虽然数值模拟结果与实验波形的趋势基本一致,但是应力幅值有一定的差异,说明基于HJC模型的数值分析对开坑阻力的计算能力尚待提高。

     

  • 图  真三轴静载混凝土侵彻实验装置

    Figure  1.  Experimental device of concrete specimen under true tri-axial confinement

    图  有限元计算模型

    Figure  2.  Finite element model

    图  不同侧限状态下的开坑深度

    Figure  3.  Pit depths under different lateral confinements

    图  不同侧限状态下开坑深度的拟合[15]

    Figure  4.  Fitting results of pit depth under different lateral confinement[15]

    图  开坑深度的进一步拟合

    Figure  5.  Further fitting of pit depth

    图  弹体侵彻过程中弹丸中的波形[25-26]

    Figure  6.  Recorded wave in the bullet during the penetration[25-26]

    图  模拟弹体侵彻过程中穿过试件的波形

    Figure  7.  Simulated wave profiles across specimen during penetration

    图  弹体侵彻过程中穿过试件的波形[15]

    Figure  8.  Wave profiles across specimen during penetration[15]

    图  弹丸加速度时程曲线

    Figure  9.  Acceleration wave profiles in bullet

    图  10  应力状态对波形的影响

    Figure  10.  Influence of stress state on waveform

    表  1  水泥砂浆的HJC本构模型参数

    Table  1.   Parameters of HJC model for cement mortar

    ${\;\rho {_0} }$/(kg·m−3)$G$/GPaAHJC/GPaBHJC/GPaCHJCNHJC$f{'} $/MPa
    18441.320.661.3350.00180.84514.4
    T/MPa${\dot \varepsilon{_0} }$/s−1$\varepsilon $f,minSmax${p{\rm{_c}} }$/MPa${\;\mu {\rm{_c}} }$${p{\rm{_l} } }$/GPa
    2.010.0180.2413.80.00751.096
    ${\;\mu {\rm{_l} } }$k1/GPak2/GPak3/GPaD1D2
    0.1585−1712080.0066291.0
    下载: 导出CSV

    表  2  弹丸JC本构模型参数

    Table  2.   Parameters of JC model of projectile

    ${\rho{_0} }$/(kg·m−3)G/GPaT0/Kc/(J·kg−1·K−1)AJC/MPaBJC/MPanJC
    7830772934777925100.26
    CJCTm/Kd1d2d3d4d5
    0.01417930.053.44−2.120.0020.61
    下载: 导出CSV

    表  3  无量纲侵彻深度公式参数

    Table  3.   Formula parameters of dimensionless penetration depth

    Stress statek0m1m2m3
    No confinement0.900.701.210.60
    Unilateral confinement1.020.551.250.65
    Bilateral confinement1.050.401.300.68
    下载: 导出CSV
  • [1] 徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. doi: 10.11883/1001-1455(2017)02-0180-06

    XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. doi: 10.11883/1001-1455(2017)02-0180-06
    [2] 徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [J]. 振动与冲击, 2018, 37(15): 59–67. doi: 10.13465/j.cnki.jvs.2018.15.008

    XU S L, WANG P F, SHAN J F, et al. Dynamic behavior of concrete under static tri-axial loadings [J]. Journal of Vibration and Shock, 2018, 37(15): 59–67. doi: 10.13465/j.cnki.jvs.2018.15.008
    [3] XU S L, SHAN J F, ZHANG L, et al. Dynamic compression behaviors of concrete under true triaxial confinement: an experimental technique [J]. Mechanics of Materials, 2020, 140: 103220. doi: 10.1016/j.mechmat.2019.103220
    [4] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. doi: 10.1016/0734-743X(94)80024-4
    [5] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. doi: 10.1016/S0734-743X(02)00005-2
    [6] CHEN X W, LI J C. Analysis on the resistive force in penetration of a rigid projectile [J]. Defence Technology, 2014, 10(3): 285–293. doi: 10.1016/j.dt.2014.06.007
    [7] 沈河涛. 弹丸侵彻混凝土介质效应的研究[D]. 北京: 北京理工大学, 1996.

    SHEN H T. Study on the effect of projectile penetrating concrete medium [D]. Beijing: Beijing Institute of Technology, 1996.
    [8] BACKMAN M E, GOLDSMITH W. The mechanics of penetration of projectiles into targets [J]. International Journal of Engineering Science, 1978, 16(1): 1–99. doi: 10.1016/0020-7225(78)90002-2
    [9] 薛建锋, 沈培辉, 王晓鸣. 弹体侵彻混凝土开坑阶段阻力的计算 [J]. 高压物理学报, 2016, 30(6): 499–504. doi: 10.11858/gywlxb.2016.06.010

    XUE J F, SHEN P H, WANG X M. Resistance during cratering for projectile penetrating into concrete target [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 499–504. doi: 10.11858/gywlxb.2016.06.010
    [10] 蒋志刚, 甄明, 刘飞, 等. 钢管约束混凝土抗侵彻机理的数值模拟 [J]. 振动与冲击, 2015, 34(11): 1–6. doi: 10.13465/j.cnki.jvs.2015.11.001

    JIANG Z G, ZHEN M, LIU F, et al. Simulation of anti-penetration mechanism of steel tube confined concrete [J]. Journal of Vibration and Shock, 2015, 34(11): 1–6. doi: 10.13465/j.cnki.jvs.2015.11.001
    [11] 朱翔, 陆新征, 杜永峰, 等. 外包钢管加固RC柱抗冲击试验研究 [J]. 工程力学, 2016, 33(6): 23–33. doi: 10.6052/j.issn.1000-4750.2014.11.0991

    ZHU X, LU X Z, DU Y F, et al. Experimental study on impact resistance of reinforced conceret columns strengthened with steel jackets [J]. Engineering Mechanics, 2016, 33(6): 23–33. doi: 10.6052/j.issn.1000-4750.2014.11.0991
    [12] 甄明, 蒋志刚, 万帆, 等. 钢管约束混凝土抗侵彻性能试验 [J]. 国防科技大学学报, 2015, 37(3): 121–127. doi: 10.11887/j.cn.201503020

    ZHEN M, JIANG Z G, WAN F, et al. Steeltube confined concrete targets penetration experiments [J]. Journal of National University of Defense Technology, 2015, 37(3): 121–127. doi: 10.11887/j.cn.201503020
    [13] 蒙朝美, 宋殿义, 蒋志刚, 等. 多边形钢管约束混凝土靶抗侵彻性能试验研究 [J]. 振动与冲击, 2018, 37(13): 14–19. doi: 10.13465/j.cnki.jvs.2018.13.003

    MENG C M, SONG D Y, JIANG Z G, et al. Tests for anti-penetration performance of polygonal steel tube-confined concrete targets [J]. Journal of Vibration and Shock, 2018, 37(13): 14–19. doi: 10.13465/j.cnki.jvs.2018.13.003
    [14] 徐松林, 单俊芳, 王鹏飞, 等. 三轴应力状态下混凝土的侵彻性能研究 [J]. 爆炸与冲击, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034

    XU S L, SHAN J F, WANG P F, et al. Penetration performance of concrete under triaxial stress [J]. Explosion and Shock Waves, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034
    [15] 陈丽娜, 单俊芳, 周李姜, 等. 应力状态对水泥砂浆侵彻性能的影响 [J]. 振动与冲击, 2020, 39(15): 32–40. doi: 10.13465/j.cnki.jvs.2020.15.005

    CHEN L N, SHAN J F, ZHOU L J, et al. Effects of stress state on penetration performance of cement mortar [J]. Journal of Vibration and Shock, 2020, 39(15): 32–40. doi: 10.13465/j.cnki.jvs.2020.15.005
    [16] MEYER C S. Development of geomaterial parameters for numerical simulations using the Holmquist-Johnson-Cook constitutive model for concrete: ARL-TR-5556 [R]. Orlando: Army Research Laboratory, 2011.
    [17] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [18] Army Corps of Engineers. Fundamentals of protective design: AT1207821 [R]. Army Corps of Engineers, 1946.
    [19] National Defense Research Committee. Effects of impact and explosion: summery technical report of division 2 [R]. Washington DC: National Defense Research Committee, 1946.
    [20] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. doi: 10.1016/0029-5493(76)90015-7
    [21] BARR P. Guidelines for the design and assessment of concrete structures subjected to impact [R]. London, UK: UK Atomic Energy Authority, Safety and Reliability Directorate, 1990.
    [22] YOUNG C W. Penetration equations: SAND 97-2426 [R]. Albuquerque, NM, US: Sandia National Laboratories, 1997.
    [23] REID S R, WEN H M. Predicting penetration, cone cracking, scabbing and perforation of reinforced concrete targets struck by flat-faced projectiles: UMIST Report ME/AM/02.01/TE/G/018507/Z [R]. Manchester: University of Manchester Institute of Science and Technology, 2001.
    [24] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. doi: 10.1016/S0734-743X(02)00037-4
    [25] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. doi: 10.1016/S0734-743X(02)00108-2
    [26] 王琳, 王富耻, 王鲁, 等. 空心弹体垂直侵彻混凝土靶板的应变测试研究 [J]. 北京理工大学学报, 2002, 22(4): 453–456. doi: 10.3969/j.issn.1001-0645.2002.04.014

    WANG L, WANG F C, WANG L, et al. Strain measurement in hollow projectiles impacting concrete targets [J]. Journal of Beijing Institute of Technology, 2002, 22(4): 453–456. doi: 10.3969/j.issn.1001-0645.2002.04.014
    [27] 张磊, 任新见, 孔德锋. 钢筋混凝土HJC模型的研究和改进[C]//第四届全国工程安全与防护学术会议. 洛阳, 2014: 134−138.

    ZHANG L, REN X J, KONG D F. Research and improvement of HJC model of steel reinforced concrete [C]//Proceedings of the 4th National Conference of Engineering Safety and Protection. Luoyang, 2014: 134−138.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  4329
  • HTML全文浏览量:  1761
  • PDF下载量:  32
出版历程
  • 收稿日期:  2020-09-01
  • 修回日期:  2020-09-23
  • 发布日期:  2021-03-25

目录

    /

    返回文章
    返回