全浸水带间隙发射高速射弹的入水冲击载荷分析

鲁春佳 侯健 魏平

鲁春佳, 侯健, 魏平. 全浸水带间隙发射高速射弹的入水冲击载荷分析[J]. 高压物理学报, 2021, 35(2): 025102. doi: 10.11858/gywlxb.20200603
引用本文: 鲁春佳, 侯健, 魏平. 全浸水带间隙发射高速射弹的入水冲击载荷分析[J]. 高压物理学报, 2021, 35(2): 025102. doi: 10.11858/gywlxb.20200603
LU Chunjia, HOU Jian, WEI Ping. Analysis on the Impact Load of High Velocity Projectile Launched by Water Immersion Gap-Exist Launch Mode[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 025102. doi: 10.11858/gywlxb.20200603
Citation: LU Chunjia, HOU Jian, WEI Ping. Analysis on the Impact Load of High Velocity Projectile Launched by Water Immersion Gap-Exist Launch Mode[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 025102. doi: 10.11858/gywlxb.20200603

全浸水带间隙发射高速射弹的入水冲击载荷分析

doi: 10.11858/gywlxb.20200603
详细信息
    作者简介:

    鲁春佳(1996-),男,硕士研究生,主要从事兵器发射与动力推进研究. E-mail:1300916557@qq.com

  • 中图分类号: TJ302

Analysis on the Impact Load of High Velocity Projectile Launched by Water Immersion Gap-Exist Launch Mode

  • 摘要: 全浸水带间隙发射方式可以将发射环境由水介质转化为气体介质。为了研究高速射弹在此条件下的入水冲击载荷,建立了射弹入水冲击载荷的理论模型。针对射弹在入水速度、头部锥角和入水攻角不同情况下的入水冲击载荷进行了计算,分析了入水速度、射弹头部参数和入水攻角对冲击载荷的影响。研究结果对全水下高速射弹入水冲击载荷的预测和射弹头部结构的设计具有重要意义。

     

  • 图  射弹水平入水冲击示意图

    Figure  1.  Schematic diagram of horizontal impact of the projectile

    图  射弹攻角示意图

    Figure  2.  Angle of attack of the projectile

    图  不同速度时的入水冲击载荷

    Figure  3.  Driving impact loads at different velocities

    图  不同速度时的冲击载荷峰值

    Figure  4.  Peak impact loads at different velocities

    图  不同锥角时的入水冲击载荷

    Figure  5.  Driving impact loads at different cone angles

    图  不同锥角时的冲击载荷峰值

    Figure  6.  Peak impact loads at different cone angles

    图  不同攻角时的入水冲击载荷

    Figure  7.  Inlet impact loads at different angles of attack

    图  沾湿因子不同时的入水冲击载荷

    Figure  8.  Inlet impact loads with different wet factors

  • [1] 孟祥宇, 侯健, 秦一平, 等. 枪弹间隙对水下枪内弹道的影响 [J]. 高压物理学报, 2020, 34(3): 035101. doi: doi:10.11858/gywlxb.20190805

    MENG X Y, HOU J, QIN Y P, et al. Influence of interior ballistics for underwater gun with gun-bullet coupling gap [J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 035101. doi: doi:10.11858/gywlxb.20190805
    [2] VON KARMAN T. The impact of a model seaplane float on water [R]. Washington DC, USA: National Advisory Committee for Aeronautics, 1929.
    [3] WAGNER V H. Phenomena associated with impacts and sliding on liquid surfaces [J]. Zeitschrift fur Angewandte Mathematik und Mechanik, 1932, 12(4): 193–215. doi: 10.1002/zamm.19320120402
    [4] 秦洪德, 赵林岳, 申静. 入水冲击问题综述 [J]. 哈尔滨工业大学学报, 2011, 43(Suppl 1): 152–157.

    QIN H D, ZHAO L Y, SHEN J. Review of water entry impact problem [J]. Journal of Harbin Institute of Technology, 2011, 43(Suppl 1): 152–157.
    [5] 王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. doi: 10.3321/j.issn:1001-1455.2008.03.014

    WANG Y H, SHI X H. Current situation and progress of research on water entry impact [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. doi: 10.3321/j.issn:1001-1455.2008.03.014
    [6] 宋保维, 杜晓旭, 孟锐, 等. 空投水雷入水冲击力仿真 [J]. 鱼雷技术, 2008, 16(3): 6–8, 12.

    SONG B W, DU X X, MENG R, et al. Simulation of water impact force of air-dropped mine [J]. Torpedo Technology, 2008, 16(3): 6–8, 12.
    [7] 卢炽华, 郑际嘉. 刚性细长柱体倾斜姿态落水冲击的附加质量法 [J]. 华中理工大学学报, 1996, 24(8): 89–93.

    LU C H, ZHENG J J. Additional mass method for the impact of rigid slender columns with slanting attitude in water [J]. Journal of Huazhong University of Science and Technology, 1996, 24(8): 89–93.
    [8] 王永虎, 石秀华, 傅妍芳, 等. 刚性α/β尖拱体垂直姿态高速入水冲击理论建模与仿真 [J]. 新技术新工艺, 2007(12): 27–29. doi: 10.3969/j.issn.1003-5311.2007.12.009

    WANG Y H, SHI X H, FU Y F, et al. Theoretical modeling and simulation of rigid ogive on its high-speed and vertical water entry [J]. New Tecnology New Process, 2007(12): 27–29. doi: 10.3969/j.issn.1003-5311.2007.12.009
    [9] 王永虎, 石秀华, 王鹏, 等. 平头尖拱体斜入水冲击理论建模与仿真 [J]. 鱼雷技术, 2008, 16(1): 14–17.

    WANG Y H, SHI X H, WANG P, et al. Modeling and simulation of oblique water-entry of disk ogive [J]. Torpedo Technology, 2008, 16(1): 14–17.
    [10] 魏卓慧, 王树山, 马峰. 刚性截锥形弹体入水冲击载荷 [J]. 兵工学报, 2010, 31(Suppl 1): 118–120.

    WEI Z H, WANG S S, MA F. Impact load of rigid truncated cone-shaped projectile into water [J]. Acta Armamentarii, 2010, 31(Suppl 1): 118–120.
    [11] 陈诚, 袁绪龙, 党建军, 等. 超空泡航行体20°角倾斜入水冲击载荷特性试验研究 [J]. 兵工学报, 2018, 39(6): 1159–1164. doi: 10.3969/j.issn.1000-1093.2018.06.016

    CHEN C, YUAN X L, DANG J J, et al. Experimental investigation into impact load during oblique water-entry of a supercaviting vehicle at 20° [J]. Acta Armamentarii, 2018, 39(6): 1159–1164. doi: 10.3969/j.issn.1000-1093.2018.06.016
    [12] 朱珠, 袁绪龙. 柱体高速入水冲击载荷与空泡特性 [J]. 计算机仿真, 2014, 31(3): 29–33,82. doi: 10.3969/j.issn.1006-9348.2014.03.007

    ZHU Z, YUAN X L. High-speed water-entry impact and cavity characters of cylingder [J]. Computer Simulation, 2014, 31(3): 29–33,82. doi: 10.3969/j.issn.1006-9348.2014.03.007
    [13] TAYLER J L. Some hydro dynamic inertia coefficient [J]. Philosophical Magazine, 1930, 19(2): 161–183.
    [14] 徐宣志. 鱼雷力学[M]. 北京: 国防工业出版社, 1992: 306−323.

    XU X Z. Torpedo mechanics [M]. Beijing: National Defense Industry Press, 1992: 306−323.
  • 加载中
图(8)
计量
  • 文章访问数:  4601
  • HTML全文浏览量:  2045
  • PDF下载量:  21
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2010-09-08

目录

    /

    返回文章
    返回