碳纤维-泡沫铝夹芯板低速冲击响应

刘姗姗 刘亚军 张英杰 李志强

刘姗姗, 刘亚军, 张英杰, 李志强. 碳纤维-泡沫铝夹芯板低速冲击响应[J]. 高压物理学报, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872
引用本文: 刘姗姗, 刘亚军, 张英杰, 李志强. 碳纤维-泡沫铝夹芯板低速冲击响应[J]. 高压物理学报, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872
LIU Shanshan, LIU Yajun, ZHANG Yingjie, LI Zhiqiang. Low-Velocity Impact Response of Carbon Fiber-Aluminum Foam Sandwich Plate[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872
Citation: LIU Shanshan, LIU Yajun, ZHANG Yingjie, LI Zhiqiang. Low-Velocity Impact Response of Carbon Fiber-Aluminum Foam Sandwich Plate[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872

碳纤维-泡沫铝夹芯板低速冲击响应

doi: 10.11858/gywlxb.20190872
基金项目: 国家自然科学基金(11672199);山西省自然科学基础研究项目(201601D011011)
详细信息
    作者简介:

    刘姗姗(1993-),女,硕士研究生,主要从事冲击动力学研究. E-mail:liushanshan0104@163.com

    通讯作者:

    李志强(1973-),男,博士,教授,主要从事冲击动力学研究. E-mail:lizhiqiang@tyut.edu.cn

  • 中图分类号: O344.1

Low-Velocity Impact Response of Carbon Fiber-Aluminum Foam Sandwich Plate

  • 摘要: 为研究夹芯结构的低速冲击响应,以碳纤维(T700)/环氧树脂复合材料层合板为上下面板,以闭孔泡沫铝为芯层,模拟夹芯板落锤冲击时的损伤演化过程。复合材料层合板采用三维实体单元建模,基于有限元软件ABAQUS中的用户子程序VUMAT,引入三维Hashin失效准则模拟复合材料的损伤破坏;采用二次应力准则,Cohesive单元模拟黏结层的层间失效;闭孔泡沫铝芯层采用3D Voronoi细观模型建模。分析复合材料夹芯结构在落锤冲击下的损伤起始、损伤扩展和最终破坏模式,通过锤头的接触力、位移、夹芯板的内能、后面板的最大位移研究夹层结构的能量吸收情况及抗冲击特性,得出了在质量保持不变的情况下,5种芯层相对密度和厚度的耦合关系中的最优设计是芯层相对密度15.0%,厚度为10 mm,为满足实际工程中的需求提供了设计依据。

     

  • 图  夹芯板结构示意图

    Figure  1.  Diagram of sandwich plate structure

    图  三维有限元模型

    Figure  2.  Three-dimensional finite element model

    图  能量-时间曲线

    Figure  3.  Energy-time curves

    图  能量-位移曲线

    Figure  4.  Energy-displacement curve

    图  不同冲击能量下的冲击载荷-时间曲线

    Figure  5.  Force-time curves under different impact energy

    图  33.0 J冲击能量下夹芯板的破坏模式

    Figure  6.  Failure mode of sandwich panel under 33.0 J impact energy

    图  不同冲击能量下锤头位移-时间曲线

    Figure  7.  Displacement-time curves of impactor at different impact energy

    图  不同冲击能量下锤头动能-时间曲线

    Figure  8.  Kinetic energy-time curves of impactor at different impact energy

    图  不同冲击能量下夹芯板内能-时间曲线

    Figure  9.  Internal energy-time curves of the sandwich board at different impact energy

    图  10  不同冲击能量下后面板的最大位移

    Figure  10.  Maximum displacement of rear panel at different impact energy

    图  11  不同夹芯结构的冲击载荷-时间曲线

    Figure  11.  The impact force-time curves for different sandwich structures

    图  12  不同夹芯结构的锤头位移-时间曲线

    Figure  12.  The displacement of impactor-time curves for different sandwich structures

    图  13  不同夹芯结构的锤头动能-时间曲线

    Figure  13.  Kinetic energy of impactor-time curves of impactor for different sandwich structures

    图  14  不同夹芯结构的芯层塑性耗散能-时间曲线

    Figure  14.  Plastic dissipation energy of core layer-time curves for different sandwich structures

    图  15  不同结构后面板最大位移与芯层厚度的比值曲线

    Figure  15.  The ratio curves of the maximum displacement of back layer to core thickness for different sandwich structures

    图  16  不同夹芯结构后面板各层的最大应力变化曲线

    Figure  16.  Maximum stress of each back layer for different sandwich structures

    图  17  冲击载荷-时间曲线

    Figure  17.  Force-time curves

    图  18  锤头位移-时间曲线

    Figure  18.  Displacement-time curves of impactor

    图  19  后面板应力云图

    Figure  19.  Stress plot of rear panel

    表  1  复合材料力学性能参数[11]

    Table  1.   Mechanical parameters of the composite materials[11]

    E1/GPaE2/GPaνG12/GPaG13/GPaG23/GPa
    180100.282.63.93.9
    Xt/MPaXc/MPaYt/MPaYc/MPaS12/MPaρ/(g·cm–3)
    2 5001 25060186851.95
    下载: 导出CSV

    表  2  Cohesive单元材料参数[14]

    Table  2.   Material parameters of cohesive elements[14]

    Knn/(GPa·mm–1)Kss(= Ktt)/(GPa·mm–1)N/MPaS(= T)/MPaG1/(J·m–2)G2(= G3)/(J·m–2)
    120433080520970
    下载: 导出CSV

    表  3  Al6061-T6材料参数

    Table  3.   Material parameters of Al6061-T6

    ρ/(g·cm–3)E/GPaνA/MPaB/MPaNm
    2.7700.282654260.341
    下载: 导出CSV

    表  4  不同能量下后面板的撕裂程度

    Table  4.   Tear degree of rear panel under different energy

    Impact energy/JTear layers
    33.00
    58.73
    91.75
    下载: 导出CSV

    表  5  5种不同的夹芯结构

    Table  5.   Five different sandwich structures

    Structure typePlane size of specimen/
    (mm × mm)
    Stacking sequenceUpper (lower) panel thickness /mmCore relative density/%The thickness of the core layer/mmDiameter of impactor/mmImpact energy/J
    1#100 × 100[45°/0°/−45°/90°]s110.015.012.533.0
    2#12.512.0
    3#15.010.0
    4#17.5 8.6
    5#20.0 7.5
    下载: 导出CSV

    表  6  5种不同结构后面板的撕裂程度

    Table  6.   Tear degree of rear panel for five sandwich structures

    Structure No.Tear layers
    1#0
    2#3
    3#5
    4#7
    5#8
    下载: 导出CSV
  • [1] 王巍, 安子军, 彭春彦, 等. 泡沫铝填充钢/铝复合管轴向抗冲击吸能特性 [J]. 哈尔滨工程大学学报, 2017, 38(7): 1093–1099.

    WANG W, AN Z J, PENG C Y, et al. Simulative research on the energy absorption characteristics of aluminum foam-filled steel/Al clad tube under axial impact loading [J]. Journal of Harbin Engineering University, 2017, 38(7): 1093–1099.
    [2] 骆伟, 谢伟, 刘敬喜. 芯层几何构形对复合材料波纹夹层结构冲击特性的影响 [J]. 江苏科技大学学报(自然科学版), 2018, 32(1): 21–26.

    LUO W, XIE W, LIU J X. Research on dynamic characteristics of a sandwich structures with various core shapes under impact loads [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2018, 32(1): 21–26.
    [3] TITA V, CARVALHO J D, VANDEPITTE D. Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches [J]. Composite Structures, 2008, 83(4): 413–428. doi: 10.1016/j.compstruct.2007.06.003
    [4] 韩守红, 吕振华. 铝泡沫夹层结构抗爆炸性能仿真分析及优化 [J]. 兵工学报, 2010, 31(11): 1468–1474.

    HAN S H, LÜ Z H. Numerical simulation of blast-resistant performance of aluminum foam sandwich structures and optimization [J]. Acta Armamentarii, 2010, 31(11): 1468–1474.
    [5] 李志斌, 卢芳云. 泡沫铝夹芯板压入和侵彻性能的实验研究 [J]. 振动与冲击, 2015(4): 1–5.

    LI Z B, LU F Y. Tests for indentation and perforation of sandwich panels with aluminium foam core [J]. Journal of Vibration and Shock, 2015(4): 1–5.
    [6] 赵金华, 曹海琳, 晏义伍, 等. 泡沫铝夹层结构复合材料低速冲击性能 [J]. 材料工程, 2018, 46(1): 92–98. doi: 10.11868/j.issn.1001-4381.2015.001295

    ZHAO J H, CAO H L, YAN Y W, et al. Low velocity impact properties of aluminum foam sandwich structural composite [J]. Journal of Materials Engineering, 2018, 46(1): 92–98. doi: 10.11868/j.issn.1001-4381.2015.001295
    [7] 荣誉. 梯度泡沫金属力学性能的Lagrangian分析 [D]. 太原: 太原理工大学, 2018.
    [8] HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47: 329–334. doi: 10.1115/1.3153664
    [9] 谭开忍, 肖熙. 含有腐蚀缺陷海底管道极限载荷分析 [J]. 海洋工程, 2006, 24(3): 63–67. doi: 10.3969/j.issn.1005-9865.2006.03.010

    TAN K R, XIAO X. Analysis on limit load of corroded submarine pipelines [J]. The Ocean Engineering, 2006, 24(3): 63–67. doi: 10.3969/j.issn.1005-9865.2006.03.010
    [10] 沈鋆. 极限载荷分析法在压力容器分析设计中的应用 [J]. 石油化工设备, 2011, 40(4): 35–38. doi: 10.3969/j.issn.1000-7466.2011.04.010

    SHEN J. Limit load analysis application in pressure vessel analytical design [J]. Petro-Chemical Equipment, 2011, 40(4): 35–38. doi: 10.3969/j.issn.1000-7466.2011.04.010
    [11] 肖先林, 王长金, 赵桂平. 碳纤维复合材料-泡沫铝夹芯板的冲击响应 [J]. 振动与冲击, 2018, 37(15): 110–117.

    XIAO X L, WANG C J, ZHAO G P. Dynamic responses of carbon fiber composite sandwich panels with aluminum foam core subjected to impact loading [J]. Journal of Vibration and Shock, 2018, 37(15): 110–117.
    [12] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strains rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [13] 熊明洋, 向忠, 胡旭东, 等. 基于ABAQUS的CCF300碳纤维层合板低速冲击破坏数值模拟 [J]. 轻工机械, 2017, 35(4): 27–32. doi: 10.3969/j.issn.1005-2895.2017.04.006

    XIONG M Y, XIANG Z, HU X D, et al. Numerical simulation of low velocity impact failure of CCF300 carbon fiber laminate based on ABAQUS [J]. Light Industry Machinery, 2017, 35(4): 27–32. doi: 10.3969/j.issn.1005-2895.2017.04.006
    [14] 陈县辉. 基于内聚力单元的层合板低速冲击响应模拟研究 [D]. 太原: 中北大学, 2014.
    [15] STUBSS C. Compilation strategies: alternate approaches to achieve low power consumption [J]. Electronic Component News, 2008, 52(4): 11–113.
    [16] FOO C C, SEAH L K, CHAI G B. Low-velocity impact failure of aluminium honeycomb sandwich panels [J]. Composite Structures, 2008, 85(1): 20–28. doi: 10.1016/j.compstruct.2007.10.016
    [17] SAHU S, MONDAL D P, CHO J U, et al. Low-velocity impact characteristics of closed cell AA2014-SiCp composite foam [J]. Composites Part B: Engineering, 2019, 160: 394–401. doi: 10.1016/j.compositesb.2018.12.054
  • 加载中
图(19) / 表(6)
计量
  • 文章访问数:  8480
  • HTML全文浏览量:  3233
  • PDF下载量:  44
出版历程
  • 收稿日期:  2019-12-23
  • 修回日期:  2020-02-04

目录

    /

    返回文章
    返回