碳纤维增强复合材料层合板的抗冲击性能

李汶蔚 梅杰 黄威

李汶蔚, 梅杰, 黄威. 碳纤维增强复合材料层合板的抗冲击性能[J]. 高压物理学报, 2020, 34(2): 024101. doi: 10.11858/gywlxb.20190822
引用本文: 李汶蔚, 梅杰, 黄威. 碳纤维增强复合材料层合板的抗冲击性能[J]. 高压物理学报, 2020, 34(2): 024101. doi: 10.11858/gywlxb.20190822
LI Wenwei, MEI Jie, HUANG Wei. Impulsive Resistance of the CFRP/Epoxy Laminate[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024101. doi: 10.11858/gywlxb.20190822
Citation: LI Wenwei, MEI Jie, HUANG Wei. Impulsive Resistance of the CFRP/Epoxy Laminate[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024101. doi: 10.11858/gywlxb.20190822

碳纤维增强复合材料层合板的抗冲击性能

doi: 10.11858/gywlxb.20190822
基金项目: 国家自然科学基金(11802100)
详细信息
    作者简介:

    李汶蔚(1985-),男,硕士,主要从事爆炸物理研究. E-mail:wenweili@gmail.com

    通讯作者:

    黄 威(1987-),男,博士,讲师,主要从事冲击动力学研究. E-mail:weihuang@hust.edu.cn

  • 中图分类号: O347

Impulsive Resistance of the CFRP/Epoxy Laminate

  • 摘要: 为了研究碳纤维增强环氧树脂基复合材料层合梁的抗冲击性能,应用金属泡沫弹撞击加载的方式,结合高速摄像机,对等厚度层合梁结构的动态响应和失效行为展开实验研究。研究不同冲击加载强度对层合梁的动态失效过程、变形轮廓、中点变形、失效模式及能量耗散比的影响。结果表明:随着冲击强度的增加,中点变形响应速度随之增加,层合梁变形模式由整体变形转变为局部变形,且局部化效应随之增加,并伴随严重的基体和纤维断裂失效。层合梁能量耗散比随冲击强度的增加而增加,并展现出与结构失效模式直接关联的弹性变形、中心断裂和完全失效3个不同阶段。

     

  • 图  高速冲击加载实验装置(a)及固定夹具装置(b)示意图(单位:mm)

    Figure  1.  Schematics of (a) the experimental set-up and (b) the clamped device (Unit: mm)

    图  CFRP/Epoxy层合板梁在$\overline I $ = 0.67冲击下的动态响应过程

    Figure  2.  Sequence of high-speed photographs of the CFRP/Epoxy laminate subjected to $\overline I $ = 0.67

    图  CFRP/Epoxy层合板梁在$\overline I $ = 0.67冲击下的变形轮廓(a)和中点变形(b)

    Figure  3.  Histories of deformation profiles (a), and midpoint deflection (b) of the CFRP/Epoxy laminate subjected to $\overline I $ = 0.67

    图  CFRP/Epoxy层合板梁在$\overline I $ = 0.67冲击下的失效模式

    Figure  4.  Failure mode of the CFRP/Epoxy laminate subjected to $\overline I $ = 0.67

    图  不同冲击强度下层合板动态变形和失效

    Figure  5.  Dynamic deformation and failure of CFRP/Epoxy laminate under different impulses

    图  层合板在不同冲击强度下的中点变形(a)和变形轮廓线(b)

    Figure  6.  Midpoints-deflection histories (a) and deformation profiles (b) of CFRP laminates under impulsive loadings

    图  CFRP/Epoxy层合板失效模式与能量耗散比的关系

    Figure  7.  Failure modes versus specific energy absorption of the CFRP/Epoxy laminate

  • [1] SHAH S Z H, KARUPPANAN S, MEGAT-YUSOFF P S M, et al. Impact resistance and damage tolerance of fiber reinforced composites: a review [J]. Composite Structures, 2019, 217: 100–121. doi: 10.1016/j.compstruct.2019.03.021
    [2] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms: a review on textiles and fibre-reinforced composites impact responses [J]. Composite Structures, 2019, 223: 110966. doi: 10.1016/j.compstruct.2019.110966
    [3] HASHIN Z. Analysis of stiffness reduction of cracked cross-ply laminates [J]. Engineering Fracture Mechanics, 1986, 25(5/6): 771–778.
    [4] HEIMBS S, BERGMANN T, SCHUELER D, et al. High velocity impact on preloaded composite plates [J]. Composite Structures, 2014, 111: 158–168. doi: 10.1016/j.compstruct.2013.12.031
    [5] XIE W B, ZHANG W, KUANG N H, et al. Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere [J]. Composites Part B: Engineering, 2016, 99: 483–493. doi: 10.1016/j.compositesb.2016.06.020
    [6] ZHOU W, LIU D, LIU N. Analyzing dynamic fracture process in fiber-reinforced composite materials with a peridynamic model [J]. Engineering Fracture Mechanics, 2017, 178: 60–76. doi: 10.1016/j.engfracmech.2017.04.022
    [7] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834–855. doi: 10.1177/002199838702100904
    [8] PERNAS-SANCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Experimental analysis of normal and oblique high velocity impacts on carbon/epoxy tape laminates [J]. Composites Part A: Applied Science and Manufacturing, 2014, 60: 24–31. doi: 10.1016/j.compositesa.2014.01.006
    [9] SIKARWAR R S, VELMURUGAN R, GUPTA N K. Influence of fiber orientation and thickness on the response of glass/epoxy composites subjected to impact loading [J]. Composites Part B: Engineering, 2014, 60: 627–636. doi: 10.1016/j.compositesb.2013.12.023
    [10] YANG Y Q, ZHANG L, GUO L C, et al. Dynamic response and research of 3D braided carbon fiber reinforced plastics subjected to ballistic impact loading [J]. Composite Structures, 2018, 206: 578–587. doi: 10.1016/j.compstruct.2018.08.021
    [11] LI X, YAHYA M Y, NIA A B, et al. Dynamic failure of basalt/epoxy laminates under blast-experimental observation [J]. International Journal of Impact Engineering, 2017, 102: 16–26. doi: 10.1016/j.ijimpeng.2016.12.001
    [12] HUANG W, ZHANG W, CHEN T, et al. Dynamic response of circular composite laminates subjected to underwater impulsive loading [J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 63–74. doi: 10.1016/j.compositesa.2018.02.043
    [13] AVACHAT S, ZHOU M. High-speed digital imaging and computational modeling of dynamic failure in composite structures subjected to underwater impulsive loads [J]. International Journal of Impact Engineering, 2015, 77: 147–165. doi: 10.1016/j.ijimpeng.2014.11.008
    [14] SCHIFFER A, TAGARIELLI V L. The dynamic response of composite plates to underwater blast: theoretical and numerical modelling [J]. International Journal of Impact Engineering, 2014, 70: 1–13. doi: 10.1016/j.ijimpeng.2014.03.002
    [15] 叶楠, 张伟, 黄威, 等. PVC夹芯板在冲击载荷下的动态响应与失效模式 [J]. 爆炸与冲击, 2017, 37(1): 37–45. doi: 10.11883/1001-1455(2017)01-0037-09

    YE N, ZHANG W, HUANG W, et al. Dynamic response and failure mode of PVC sandwich plates subjected to impact loading [J]. Explosion and Shock Waves, 2017, 37(1): 37–45. doi: 10.11883/1001-1455(2017)01-0037-09
    [16] 敬霖, 王志华, 赵隆茂, 等. 撞击载荷下泡沫铝夹芯梁的塑性动力响应 [J]. 爆炸与冲击, 2010, 30(6): 561–568. doi: 10.11883/1001-1455(2010)06-0561-08

    JIN L, WANG Z H, ZHAO L M, et al. Dynamic plastic response of foam sandwich beams subjected to impact loading [J]. Explosion and Shock Waves, 2010, 30(6): 561–568. doi: 10.11883/1001-1455(2010)06-0561-08
    [17] RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2243–2259.
  • 加载中
图(7)
计量
  • 文章访问数:  9336
  • HTML全文浏览量:  3179
  • PDF下载量:  52
出版历程
  • 收稿日期:  2019-08-16
  • 修回日期:  2019-09-06
  • 发布日期:  2019-11-25

目录

    /

    返回文章
    返回