氢气/甲烷-空气爆轰波在含环形障碍物圆管内传播的试验研究

王鲁庆 马宏昊 王波 沈兆武

王鲁庆, 马宏昊, 王波, 沈兆武. 氢气/甲烷-空气爆轰波在含环形障碍物圆管内传播的试验研究[J]. 高压物理学报, 2018, 32(3): 035203. doi: 10.11858/gywlxb.20170687
引用本文: 王鲁庆, 马宏昊, 王波, 沈兆武. 氢气/甲烷-空气爆轰波在含环形障碍物圆管内传播的试验研究[J]. 高压物理学报, 2018, 32(3): 035203. doi: 10.11858/gywlxb.20170687
WANG Luqing, MA Honghao, WANG Bo, SHEN Zhaowu. Detonation Propagation in Hydrogen/Methane-Air Mixtures in a Round Tube Filled with Orifice Plates[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035203. doi: 10.11858/gywlxb.20170687
Citation: WANG Luqing, MA Honghao, WANG Bo, SHEN Zhaowu. Detonation Propagation in Hydrogen/Methane-Air Mixtures in a Round Tube Filled with Orifice Plates[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035203. doi: 10.11858/gywlxb.20170687

氢气/甲烷-空气爆轰波在含环形障碍物圆管内传播的试验研究

doi: 10.11858/gywlxb.20170687
基金项目: 

国家自然科学基金面上项目 51674229

国家自然科学基金面上项目 51374189

中国科学技术大学重要方向项目培育基金 WK2480000002

详细信息
    作者简介:

    王鲁庆(1990-), 男, 博士, 主要从事气体爆轰相关研究.E-mail:aiyuan@mail.ustc.edu.cn

    通讯作者:

    马宏昊(1980-), 男, 博士, 副教授, 主要从事爆破器材与安全工程研究.E-mail:hhma@ustc.edu.cn

  • 中图分类号: O381

Detonation Propagation in Hydrogen/Methane-Air Mixtures in a Round Tube Filled with Orifice Plates

  • 摘要: 在内径48 mm、长度5 800 mm的含环形障碍物圆管内,进行了氢气-空气及氢气-甲烷-空气的爆轰波传播试验研究,确定了爆燃转爆轰(Deflagration-to-Detonation Transition,DDT)极限。环形障碍物阻塞比为0.56,间距分为两种,即S=DS=2D,其中S为障碍物间距,D为管道内径。火焰的速度由安装在管道壁面上的光电二极管采集得到。试验测量得到的火焰为准爆轰或阻塞火焰。在S=2D情况下得到的火焰速度均比S=D情况下的火焰速度高,并且靠近DDT极限时速度波动更明显,表明在间距较大的情况下爆轰的重起爆循环周期更长,类似于"弛振爆轰"。对于氢气-空气,障碍物间距为D时在DDT极限处有d/λ>1(富氧条件下d/λ=1.6,贫氧条件下d/λ=1.4),间距为2D时更容易形成爆轰的重起爆,在DDT极限处与准则d/λ≈1一致;对于氢气-甲烷-空气,甲烷的添加使爆轰更不稳定,对于两种间距的障碍物得到的DDT极限均有d/λ≈1(dλ分别为障碍物内径和爆轰胞格尺寸)。说明障碍物间距对爆轰波传播有显著的影响,即间距的增大更有利于爆轰波的传播。为形成准爆轰,障碍物内径必须至少可以容纳一个爆轰胞格,同时障碍物间距足够大从而引起爆轰的重起爆。

     

  • 图  试验装置示意图

    Figure  1.  Sketch of experimental apparatus

    图  圆形孔板障碍物

    Figure  2.  Orifice plate

    图  不同氢气含量的火焰在管中的传播速度

    Figure  3.  Flame velocity down the length of the tube

    图  氢气-空气火焰在管尾的速度

    Figure  4.  Flame velocity of hydrogen-air mixtures at tube end

    图  氢气-空气爆轰胞格尺寸

    Figure  5.  Detonation cell size of hydrogen-air mixtures

    图  氢气-甲烷-空气火焰在管尾的速度

    Figure  6.  Flame velocity of stoichiometric hydrogen-methane-air mixtures at tube end

    图  氢气-甲烷-空气的爆轰胞格尺寸

    Figure  7.  Detonation cell size of stoichiometric hydrogen-methane-air mixtures

    表  1  氢气-空气的DDT极限

    Table  1.   DDT limits for hydrogen-air mixtures

    Obstacle spacing Lean limit/% φ d/λ L/λ Rich limit/% φ d/λ L/λ
    D 22 0.67 1.6 7.0 48 2.20 1.4 6.4
    2D 21 0.63 1.1 7.2 49 2.29 1.0 6.6
    下载: 导出CSV

    表  2  化学计量比下氢气-甲烷-空气的DDT极限

    Table  2.   DDT limits for stoichiometric hydrogen-methane-air mixtures

    Obstacle spacing Limit (X) d/λ L/λ
    D 0.75 0.9 4.0
    2D 0.75 0.9 6.1
    下载: 导出CSV
  • [1] CICCARELLI G, DOROFEEV S.Flame acceleration and transition to detonation in ducts[J].Progress in Energy and Combustion Science, 2008, 34(4):499-550. doi: 10.1016/j.pecs.2007.11.002
    [2] CROSS M, CICCARELLI G.DDT and detonation propagation limits in an obstacle filled tube[J].Journal of Loss Prevention in the Process Industries, 2015, 36:380-386. doi: 10.1016/j.jlp.2014.11.020
    [3] PERALDI O, KNYSTAUTAS R, LEE J H.Criteria for transition to detonation in tubes[J].Symposium (International) on Combustion, 1988, 21(1):1629-1637. doi: 10.1016/S0082-0784(88)80396-5
    [4] DOROFEEV S B, SIDOROV V P, KUZNETSOV M S, et al.Effect of scale on the onset of detonations[J].Shock Waves, 2000, 10(2):137-149. doi: 10.1007/s001930050187
    [5] KARIM G A, WIERZBA I, AL-ALOUSI Y.Methane-hydrogen mixtures as fuels[J].International Journal of Hydrogen Energy, 1996, 21(7):625-631. doi: 10.1016/0360-3199(95)00134-4
    [6] YU M, ZHENG K, ZHENG L, et al.Effects of hydrogen addition on propagation characteristics of premixed methane/air flames[J].Journal of Loss Prevention in the Process Industries, 2015, 34:1-9. doi: 10.1016/j.jlp.2015.01.017
    [7] DI SARLI V, DI BENEDETTO A.Laminar burning velocity of hydrogen-methane/air premixed flames[J].International Journal of Hydrogen Energy, 2007, 32(5):637-646. doi: 10.1016/j.ijhydene.2006.05.016
    [8] BOZIER O, SORIN R, VIROT F, et al. Detonability of binary H2/CH4-air mixtures[C]//Proceedings of Third ICHS, ID, 2009: 188. https: //www. h2tools. org/content/detonability-binary-h2-ch4-air-mixtures
    [9] HU E, HUANG Z, LIU B, et al.Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas-hydrogen blends combining with EGR[J].International Journal of Hydrogen Energy, 2009, 34(2):1035-1044. doi: 10.1016/j.ijhydene.2008.11.030
    [10] WU L, KOBAYASHI N, LI Z, et al.Experimental study on the effects of hydrogen addition on the emission and heat transfer characteristics of laminar methane diffusion flames with oxygen-enriched air[J].International Journal of Hydrogen Energy, 2016, 41(3):2023-2036. doi: 10.1016/j.ijhydene.2015.10.132
    [11] WANG L, MA H, SHEN Z, et al.Experimental investigation of methane-oxygen detonation propagation in tubes[J].Applied Thermal Engineering, 2017, 123:1300-1307. doi: 10.1016/j.applthermaleng.2017.05.045
    [12] WANG L, MA H, SHEN Z, et al.Detonation characteristics of stoichiometric H2-O2 diluted with Ar/N2 in smooth and porous tubes[J].Experimental Thermal and Fluid Science, 2018, 91:345-353. doi: 10.1016/j.expthermflusci.2017.08.021
    [13] GAO Y, NG H D, LEE J H S.Minimum tube diameters for steady propagation of gaseous detonations[J].Shock Waves, 2014, 24(4):447-454. doi: 10.1007/s00193-014-0505-8
    [14] ZHANG B, SHEN X, PANG L, et al.Methane-oxygen detonation characteristics near their propagation limits in ducts[J].Fuel, 2016, 177:1-7. doi: 10.1016/j.fuel.2016.02.089
    [15] KEE R J, RUPLEY F M, MILLER J A. Chemkin-Ⅱ: a fortran chemical kinetics package for the analysis of gas-phase chemical kinetics: SAND 89-8009[R]. Albuquerque, NM: Sandia National Laboratories, 1989. https: //www. osti. gov/biblio/5681118
    [16] MORLEY C. Gaseq: a chemical equilibrium program for Windows[Z]. 2005.
    [17] CICCARELLI G, WANG Z, LU J, et al.Effect of orifice plate spacing on detonation propagation[J].Journal of Loss Prevention in the Process Industries, 2017, 49(B):739-744. https://www.sciencedirect.com/science/article/pii/S0950423017302619
    [18] GU L S, KNYSTAUTAS R, LEE J H S.Influence of obstacle spacing on the propagation of quasi-detonation[J].Dynamics of Explosions of Progress in Astronautics and Aeronautics, 1988, 114:232-247. doi: 10.2514/5.9781600865886.0232.0247
    [19] ZHANG B, KAMENSKIHS V, NG H D, et al.Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures[J].Proceedings of the Combustion Institute, 2011, 33(2):2265-2271. doi: 10.1016/j.proci.2010.06.165
    [20] CICCARELLI G, CROSS M.On the propagation mechanism of a detonation wave in a round tube with orifice plates[J].Shock Waves, 2016, 26(5):587-597. doi: 10.1007/s00193-016-0676-6
    [21] GAO Y, LEE J H S, NG H D.Velocity fluctuation near the detonation limits[J].Combustion and Flame, 2014, 161(11):2982-2990. doi: 10.1016/j.combustflame.2014.04.020
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  7610
  • HTML全文浏览量:  3130
  • PDF下载量:  212
出版历程
  • 收稿日期:  2017-12-01
  • 修回日期:  2018-01-11

目录

    /

    返回文章
    返回