全光纤位移干涉技术在SHPB实验测量中的应用

翁继东 李英雷 陈宏 叶想平 叶素华 谭华 刘仓理

翁继东, 李英雷, 陈宏, 叶想平, 叶素华, 谭华, 刘仓理. 全光纤位移干涉技术在SHPB实验测量中的应用[J]. 高压物理学报, 2018, 32(1): 013201. doi: 10.11858/gywlxb.20170533
引用本文: 翁继东, 李英雷, 陈宏, 叶想平, 叶素华, 谭华, 刘仓理. 全光纤位移干涉技术在SHPB实验测量中的应用[J]. 高压物理学报, 2018, 32(1): 013201. doi: 10.11858/gywlxb.20170533
WENG Jidong, LI Yinglei, CHEN Hong, YE Xiangping, YE Suhua, TAN Hua, LIU Cangli. Application of an All-Fiber Displacement Interferometer on SHPB Experiment Measurements[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 013201. doi: 10.11858/gywlxb.20170533
Citation: WENG Jidong, LI Yinglei, CHEN Hong, YE Xiangping, YE Suhua, TAN Hua, LIU Cangli. Application of an All-Fiber Displacement Interferometer on SHPB Experiment Measurements[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 013201. doi: 10.11858/gywlxb.20170533

全光纤位移干涉技术在SHPB实验测量中的应用

doi: 10.11858/gywlxb.20170533
基金项目: 

中国工程物理研究院流体物理研究所冲击波物理与爆轰物理实验室基金 9140C671001140C67286

详细信息
    作者简介:

    翁继东(1977—), 男, 博士, 研究员, 主要从事光电测试技术及应用研究. E-mail: wengjd1234@126.com

  • 中图分类号: O521.3;O384

Application of an All-Fiber Displacement Interferometer on SHPB Experiment Measurements

  • 摘要: 为直接测量霍普金森压杆加载下试样径向应变位移,提出了一种稳幅输出的新型全光纤位移干涉技术。该技术采用半导体光放大器与掺饵光纤放大器的组合对来自试样表面的反射光进行动态饱和式放大。理论研究表明,该新型全光纤位移干涉仪能够输出振幅稳定的干涉信号,消除试样表面反射光强变化对位移测量精度的影响。实验结果表明,新型全光纤位移干涉仪能够实现对霍普金森压杆加载下试样弹性应变和塑性应变的高精度非接触测量。

     

  • 图  全光纤激光位移干涉技术工作原理

    Figure  1.  Diagram of new displacement interferometer

    图  面对称双测点结构示意图

    Figure  2.  Layout of two symmetrical measuring points

    图  DISAR系统输出信号及数据处理结果

    Figure  3.  Measurement signals and results obtained from the DISAR system

    图  DISAR系统测量的金属试样应变位移

    Figure  4.  Strain histories of metal sample measured by the DISAR system

  • [1] KOLSKY H.An investigation of the mechanical properties of materials at very high rates of loading[J].Proceedings of the Physical Society of London Section B, 1949, 62(11):676-700. doi: 10.1088/0370-1301/62/11/302
    [2] LI Y, RAMESH K T.An optical technique for measurement of material properties in the tension Kolsky bar [J].International Journal of Impact Engineering, 2007, 34(4):784-798. doi: 10.1016/j.ijimpeng.2005.12.002
    [3] SUTTON M A, ORTEU J J, SCHREIER H.Image correlation for shape, motion and deformation measurements:basic concepts, theory and applications[M].New York:Springer Publishing, 2009.
    [4] AVINADAV C, ASHUACH Y, KREIF R.Interferometry-based Kolsky bar apparatus[J].Review of Scientific Instruments, 2011, 82(7):223. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5971423
    [5] SONG H W, WU X Q, HUANG C G, et al.Measurement of fast-changing low velocities by photonic Doppler velocimetry[J].Review of Scientific Instruments, 2012, 83(7):073301. doi: 10.1063/1.4731014
    [6] WENG J D, TAN H, WANG X, et al.Optical-fiber interferometer for velocity measurements with picosecond resolution[J].Applied Physics Letters, 2006, 89(11):4669. doi: 10.1063/1.2335948
    [7] STRAND O T, GOOSMAN D R, MARTINEZ C, et al.Compact system for high-speed velocimetry using heterodyne techniques[J].Review of Scientific Instruments, 2006, 77(8):083108. doi: 10.1063/1.2336749
    [8] DOLAN D H, JONES S C.Push-pull analysis of photonic Doppler velocimetry measurements[J].Review of Scientific Instruments, 2007, 78(7):076102. doi: 10.1063/1.2754405
    [9] WENG J D, WANG X, TAO T J, et al.Optic-microwave mixing velocimeter for superhigh velocity measurement[J].Review of Scientific Instruments, 2011, 82(12):123114. doi: 10.1063/1.3670403
    [10] AO T, DOLAN D H.Effect of window reflections on photonic Doppler velocimetry measurements[J].Review of Scientific Instruments, 2011, 82(2):023907. doi: 10.1063/1.3551954
    [11] GINOVART F, SIMON J C, VALIENTE I.Gain recovery dynamics in semiconductor optical amplifier[J].Optics Communications, 2001, 199(1):111-115. http://www.sciencedirect.com/science/article/pii/S0030401801015747
  • 加载中
图(4)
计量
  • 文章访问数:  7574
  • HTML全文浏览量:  2472
  • PDF下载量:  239
出版历程
  • 收稿日期:  2017-02-20
  • 修回日期:  2017-03-26

目录

    /

    返回文章
    返回