爆炸下限临界浓度丙烷-空气混合过程及可燃性研究

任少云

任少云. 爆炸下限临界浓度丙烷-空气混合过程及可燃性研究[J]. 高压物理学报, 2017, 31(5): 629-636. doi: 10.11858/gywlxb.2017.05.017
引用本文: 任少云. 爆炸下限临界浓度丙烷-空气混合过程及可燃性研究[J]. 高压物理学报, 2017, 31(5): 629-636. doi: 10.11858/gywlxb.2017.05.017
REN Shao-Yun. Mixing and Explosion Process of Propane-Air at Lower Flammable Limit in Confined Vessel[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 629-636. doi: 10.11858/gywlxb.2017.05.017
Citation: REN Shao-Yun. Mixing and Explosion Process of Propane-Air at Lower Flammable Limit in Confined Vessel[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 629-636. doi: 10.11858/gywlxb.2017.05.017

爆炸下限临界浓度丙烷-空气混合过程及可燃性研究

doi: 10.11858/gywlxb.2017.05.017
详细信息
    作者简介:

    任少云(1978-),女,博士,副教授,主要从事安全科学与技术研究.E-mail:995292635@qq.com

  • 中图分类号: X915.5

Mixing and Explosion Process of Propane-Air at Lower Flammable Limit in Confined Vessel

  • 摘要: 丙烷是液化石油气的主要成分之一,爆炸下限的丙烷-空气浓度分布及其可燃性是液化石油气安全技术措施的基础。采用Fluent软件,建立三维数学模型,在长径比分别为1、3、5和7的容器内,模拟了爆炸下限的丙烷-空气混合过程和燃烧过程,分析了爆炸下限的丙烷-空气不均匀分布时对混合气体燃烧的影响。实验数据验证了该数值模型的合理性。在重力作用下丙烷-空气浓度分布不均匀,长径比增大,丙烷浓度梯度增大。浓度分布不均匀导致不同的点火位置对爆炸下限丙烷-空气燃烧有影响。容器长径比影响火焰传播,随着长径比增大,非均匀丙烷-空气混合气体超压峰值呈下降趋势,其超压峰值出现的时间变短。

     

  • 图  实验系统示意图

    Figure  1.  Experiment setup

    图  氧气体积浓度的模拟数据和实验数据对比图

    Figure  2.  Measured versus simulated oxygen concentration

    图  网格验证浓度和爆炸压力对比曲线

    Figure  3.  Simulated concentration and overpressure received from two grid sizes

    图  长径比分别为1、3、5和7的4个不同尺寸的圆柱罐

    Figure  4.  Geometric models (L/D=1, 3, 5, 7)

    图  宏观体积比2.1 %的丙烷与空气混合时丙烷浓度云图

    Figure  5.  Simulated mixing process for stratified propane-air mixture (C3H8:2.1% by volume) in vessel with L/D of 1, 3, 5 and 7, respectively

    图  长径比为1、3、5和7罐内不同位置丙烷浓度-时间曲线(C3H8宏观体积比2.1%)

    Figure  6.  Simulated concentration-time curves for propane-air mixture (C3H8:2.1% by volume) in vessels with L/D of 1, 3, 5 and 7, respectively

    图  长径比为3的容器内丙烷-空气火焰传播云图

    Figure  7.  Simulated flame propagation process of propane-air in vessel with L/D ratio of 3

    图  不同长径比罐内火焰传播云图

    Figure  8.  Simulated flame propagation process of propane-air in vessel with L/D ratio of 1, 3, 5 and 7, respectively

    图  非均匀分布丙烷-空气的最大瞬态火焰传播速度随长径比变化(C3H8宏观体积比2.1%)

    Figure  9.  Comparison of simulated maximum flame propagation speed of stratified propane-air (C3H8:2.1% by volume)

    图  10  长径比为1、3、5和7时罐内超压对比(C3H8宏观体积比2.1%)

    Figure  10.  Simulated overpressure of stratified propane-air (C3H8:2.1% by volume) in vessel with L/D ratio of 1, 3, 5 and 7, respectively

    表  1  罐高1/5和4/5处测量的氧气浓度

    Table  1.   Measured volume fraction of O2 at 1/5 and 4/5 of vessel height

    Height/
    (m)
    12%(O2 volume fraction) 15%(O2 volume fraction) 20%(O2 volume fraction)
    1 2 3 Average 1 2 3 Average 1 2 3 Average
    0.06 13.1 12.8 13.1 13.0 15.6 15.5 15.2 15.4 22.2 21.8 22.1 22.0
    0.27 11.7 11.4 11.3 11.5 14.5 14.6 14.3 14.5 18.2 18.9 18.3 18.5
    下载: 导出CSV

    表  2  Grid 1和Grid 2网格计算氧气浓度偏差对比

    Table  2.   Relative deviation of simulated concentration from two kinds of gird sizes(Grid 1, Grid 2)

    Time/
    (s)
    Concentration(Grid 1)/(%) Concentration(Grid 2)/(%) Concentration difference/(%) Relative deviation/(%)
    5 14.600 14.320 0.280 1.90
    30 14.510 14.320 0.190 1.31
    40 14.508 14.319 0.189 1.30
    下载: 导出CSV

    表  3  Grid 3和Grid 4网格计算超压偏差

    Table  3.   Relative deviation of simulated peak overpressure from two kinds of gird sizes(Grid 3, Grid 4)

    Item Grid 3 Grid 4 Difference Relative deviation/(%)
    Peak overpressure/(MPa) 0.071 5 0.071 3 0.000 2 0.3
    Time of peak overpressure/(s) 0.187 0.195 0.008 4.2
    下载: 导出CSV
  • [1] 邢志祥.火灾环境下液化气储罐热响应动力过程的研究[D].南京: 南京工业大学, 2004: 1-4. http://cdmd.cnki.com.cn/Article/CDMD-10291-2005128990.htm

    XING Z X.A study on the thermal response dynamic process of liquefied gas tanks subjected to fire environment[D].Nanjing: Nanjing University of Technology, 2004: 1-4. http://cdmd.cnki.com.cn/Article/CDMD-10291-2005128990.htm
    [2] 张增亮, 林柏泉, 李贤忠, 等.液化石油气爆炸抑制研究[J].燃烧科学与技术, 2013, 19(4):317-322. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201304006

    ZHANG Z L, LIN B Q, LI X Z, et al.Liquefied petroleum gas explosion suppression[J].Journal of Combustion Science and Technology, 2013, 19(4):317-322. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201304006
    [3] SALZANO E, CAMMAROTA F, BENEDETTO A D, et al.Explosion behavior of hydrogen-methane/air mixtures[J].J Loss Prevent Proc, 2012, 25(3):443-447. doi: 10.1016/j.jlp.2011.11.010
    [4] MIAO H Y, LU L, HUANG Z H.Flammability limits of hydrogen-enriched natural gas[J].Int J Hydrogen Energ, 2011, 36(11):6937-6947. doi: 10.1016/j.ijhydene.2011.02.126
    [5] Fluent Inc.Fluent 6.3 user's guide [Z].Lebanon, NH: Fluent Inc, 2006: 1628-1641.
    [6] SCHMIDT D P, CORRADINI M L.Analytical prediction of the exit flow of cavitating orifices[J].Atomization Spray, 1997, 7(6):603-616. doi: 10.1615/AtomizSpr.v7.i6
    [7] 王福军.计算流体动力学分析CFD软件原理与应用[M].北京:清华大学出版社, 2004:1-10.

    WANG F J.Computational fluid dynamics analysis—The principle and application of CFD software[M].Beijing:Tsinghua University Press, 2004:1-10.
    [8] COPPALLE A, VERVISCH P.The total emissivities of high-temperature flames[J].Combust Flame, 1983, 49(1):101-108. http://www.sciencedirect.com/science/article/pii/0010218083901542
    [9] SMITH T F, SHEN Z F, FRIEDMAN J N.Evaluation of coecients for the weighted sum of gray gases model[J].J Heat Transfer, 1982, 104(4):602-608. doi: 10.1115/1.3245174
    [10] CASHDOLLAR K L, ZLOCHOWER I A, GREEN G M, et al.Flammability of methane, propane, and hydrogen gases[J].J Loss Prevent Proc Ind, 2000, 13(3/4/5):327-340. http://www.sciencedirect.com/science/article/pii/S0950423099000376
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  8007
  • HTML全文浏览量:  3212
  • PDF下载量:  379
出版历程
  • 收稿日期:  2016-09-25
  • 修回日期:  2016-12-02

目录

    /

    返回文章
    返回