混凝土材料动态拉伸强度的应变率强化规律

高光发

高光发. 混凝土材料动态拉伸强度的应变率强化规律[J]. 高压物理学报, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013
引用本文: 高光发. 混凝土材料动态拉伸强度的应变率强化规律[J]. 高压物理学报, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013
GAO Guang-Fa. Hardening Effect of the Strain Rate on the Dynamic Tensile Strength of the Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013
Citation: GAO Guang-Fa. Hardening Effect of the Strain Rate on the Dynamic Tensile Strength of the Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013

混凝土材料动态拉伸强度的应变率强化规律

doi: 10.11858/gywlxb.2017.05.013
基金项目: 

国家自然科学基金 11472008

国家自然科学基金 11202206

教育部博士点专项基金 20123415120001

中国博士后科学基金 2011M501057

力学浙江省重中之重学科开放基金 XKLX1513

中央高校基本科研业务费专项资金 30915118801

详细信息
    作者简介:

    高光发(1980—),男,博士,教授,主要从事爆炸与冲击动力学、波动力学研究.E-mail:gfgao@ustc.edu.cn

  • 中图分类号: O347.3

Hardening Effect of the Strain Rate on the Dynamic Tensile Strength of the Plain Concrete

  • 摘要: 混凝土是重要的工程材料,研究其在动态作用下的力学性能具有极其重要的意义与价值。混凝土材料的动态拉伸强度具有明显的应变率效应,而且在低应变率与高应变率条件下的动态强化因子ψDIF(DIF:Dynamic Increase Factor)与应变率的关系具有明显的区别。参考现有的相关综述文献,收集近二十余年来大量的混凝土动态拉伸试验结果数据,结合理论分析,探讨了在不同应变率阶段混凝土材料拉伸强度动态强化因子的变化规律, 以及不同试验手段如直接拉伸、动态劈裂与层裂等对拉伸动态强化因子的影响规律。最后对试验结果进行拟合,得到混凝土材料在不同应变率区间时拉伸强度动态强化因子的预测表达式。研究表明:(1)混凝土材料的动态强化因子ψDIF随着应变率的增加呈递增趋势,${{\psi }_{\text{DIF}}}-\ln \bar{\dot{\varepsilon }}$具有类似的线性关系;(2)混凝土材料的拉伸强度ψDIF值随应变率增加而递增的趋势在3个不同应变率阶段,斜率明显不同,在高应变率时变化趋势最明显;(3)无论是低应变率区间还是高应变率区间,混凝土的动态拉伸强度ψDIF值与试验方式(直接拉伸、动态劈裂、层裂及其他方式)并没有明显的关系。

     

  • 图  混凝土材料拉伸强度的应变率效应[12]

    Figure  1.  Strain rate influence on tensile strength of plain concrete[12]

    图  混凝土材料拉伸强度的应变率效应(Ⅱ)

    Figure  2.  Strain rate influence on tensile strength of plain concrete (Ⅱ)

    图  不同研究情况下应变率的量级

    Figure  3.  Magnitude of strain rates expected for different loading cases

    图  混凝土材料准静态拉伸强度ψDIF与应变率之间的关系

    Figure  4.  Relationship between ψDIF and strain rate of the quasi-static tensile strength of plain concrete

    图  低应变率时混凝土材料动态拉伸强度的ψDIF与应变率之间的关系

    Figure  5.  Relationship between ψDIF and strain rate of the tensile strength of plain concrete at low strain rates

    图  不同试验方法混凝土材料动态拉伸强度的ψDIF与应变率之间的关系(Ⅰ)

    Figure  6.  Relationship between ψDIF and strain rate of the tensile strength of plain concrete with different experimental methods (Ⅰ)

    图  高应变率时混凝土材料动态拉伸强度ψDIF与应变率之间的关系

    Figure  7.  Relationship between ψDIF and strain rate of the tensile strength of plain concrete at high strain rates

    图  不同试验方法混凝土材料动态拉伸强度ψDIF与应变率之间的关系(Ⅱ)

    Figure  8.  Relationship between ψDIF and strain rate of the tensile strength of plain concrete with different experimental methods (Ⅱ)

    图  高应变率时混凝土材料拉伸强度的ψDIF值与拟合曲线

    Figure  9.  ψDIF and fitted curve of tensile strength of plain concrete at high strain rates

    图  10  混凝土材料拉伸强度的ψDIF值与拟合曲线

    Figure  10.  ψDIF and fitted curve of tensile strength of plain concrete

  • [1] ABRAM D A.Effect of rate of application of load on the compressive strength of concrete[J].Am Soc Test Mater, 1917, 17(Ⅱ):364-377.
    [2] MALVAR L E, ROSS C A.Review of strain rate effects for concrete in tension[J].ACI Mater J, 1998, 95(6):735-739. http://cn.bing.com/academic/profile?id=97209aeec680a4179187bf18b762a71e&encoded=0&v=paper_preview&mkt=zh-cn
    [3] EIBL J, SCHMIDT-HURTIENNE B.Strain-rate-sensitive constitutive law for concrete[J].J Eng Mech, 1999, 125(12):1411-1420. doi: 10.1061/(ASCE)0733-9399(1999)125:12(1411)
    [4] AMMANN W, BARR P, BERRIAUD C, et al.Concrete structures under impact and impulsive loading[R].Lausanne, France: Comité Euro-International du Béton, 1988.
    [5] CEB.CEB-FIP model code 1990[Z].Trowbridge, Wiltshire, UK: Redwood Books, 1993.
    [6] RIEDEL W, THOMA K, HIERMAIER S.Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceeding of 9th International Symposium on Interaction of the Effect of Munitions with Structures.Berlin-Strausberg, Germany, 1999: 315-322.
    [7] LI Q M, MENG H.About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J].Int J Solids Struct, 2003, 40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7
    [8] LU Y B, LI Q M.About the dynamic uniaxial tensile strength of concrete-like materials[J].Int J Impact Eng, 2011, 38(4):171-180. doi: 10.1016/j.ijimpeng.2010.10.028
    [9] MIHASHI H, WITTMANNF H.Stochastic approach to study the influence of rate of loading on strength of concrete[J].HERON, 1980, 25(3):73-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0520071206690439
    [10] HOLMQUIST T J, JOHNSON G R, COOK W H.A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressure[C]//14th International Symposium on Ballistics.Quebec, Canada, 1993: 591-600.
    [11] GOMEZ J T, SHUKLA A, SHARMA A.Static and dynamic behavior of concrete and granite in tension with damage[J].Theor Appl Fract Mech, 2001, 36(1):37-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5cd52e041982af0b5accb45942aa5f3c
    [12] MALVAR L J, CRAWFORD J E.Dynamic increase factors for concrete[C]//28th DDESB Seminar.Orlando, FL, 1998.
    [13] TEDESCO J W, ROSS C A.Strain-rate-dependent constitutive equation for concrete[J].J Pressure Vessel Technol, 1998, 120(4):398-405. doi: 10.1115/1.2842350
    [14] BIOLZI L, Tognon G.Strain rate effect on crack propagation in concrete[J].Theor Appl Fract Mech, 1987, 7(3):201-206. doi: 10.1016/0167-8442(87)90037-1
    [15] PYO S, EL-TAWIL S.Crack velocity-dependent dynamic tensile behavior of concrete[J].Int J Impact Eng, 2013, 55(5):63-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90f54d6eefea3ec5a858757925d3c00e
    [16] CUSATIS G.Strain-rate effects on concrete behavior[J].Int J Impact Eng, 2011, 38(4):162-170. doi: 10.1016/j.ijimpeng.2010.10.030
    [17] OŽBOLT J, SHARMA A, ĪRHAN B, et al.Tensile behavior of concrete under high loading rates[J].Int J Impact Eng, 2014, 69:55-68. doi: 10.1016/j.ijimpeng.2014.02.005
    [18] ASPRONE D, CADONI E, PROTA A.Experimental analysis on tensile dynamic behavior of existing concrete under high strain rates[J].ACI Struct J, 2009, 106(1):106-113. http://cn.bing.com/academic/profile?id=bf9870118573943d6112928f377d4ab4&encoded=0&v=paper_preview&mkt=zh-cn
    [19] SCHULER H, MAYRHOFER C, THOMA K.Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates[J].Int J Impact Eng, 2006, 32(10):1635-1650. doi: 10.1016/j.ijimpeng.2005.01.010
    [20] WEERHEIJM J, VAN DOORMAAL J C A M.Tensile failure of concrete at high loading rates:new test data on strength and fracture energy from instrumented spalling tests[J].Int J Impact Eng, 2007, 34(3):609-626. doi: 10.1016/j.ijimpeng.2006.01.005
    [21] WANG Z L, YANG D.Study on dynamic behavior and tensile strength of concrete using 1D wave propagation characteristics[J].Mech Adv Mater Struct, 2015, 22(3):184-191. doi: 10.1080/15376494.2013.861045
    [22] ZIELINSKI A J.Concrete structures under impact loading rate effects[R].Delft, Nederland: Delft University of Technology, 1984.
    [23] ROSS C A, THOMPSON N P Y, TEDESCOJ W.Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression[J].ACI Mater J, 1989, 86(5):475-481. http://cn.bing.com/academic/profile?id=2442a3190fb71f63e99f6ef0af5a1487&encoded=0&v=paper_preview&mkt=zh-cn
    [24] ROSS C A.Split-Hopkinson pressure bar tests: AD-A242 549[R].Tyndall, FL: HQ Air Force Engineering and Services Center, 1989.
    [25] MELLINGER F M, BIRKIMER D L.Measurement of stress and strain on cylindrical test specimens of rock and concrete under impact loading[R].Cincinnati, OH: US Army Corps of Engineers, Ohio River Division Laboratories, 1966: 71.
    [26] BIRKIMER D L, LINDEMANN R.Dynamic tensile strength of concrete materials[J].J Proceed, 1971, 68(1):47-49. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201707018
    [27] BIRKIMER D L.Critical normal fracture strain of portland cement concrete[D].Cincinnati, OH: University of Cincinnati, 1968: 122.
    [28] COWELL W L.Dynamic properties of plain portland cement concrete[R].Port Hueneme, CA: Naval Civil Engineering Laboratory, 1966: 46.
    [29] TAKEDA J, TACHIKAWA H.Deformation and fracture of concrete subjected to dynamic load[C]//Proceedings of the Conference on Mechanical Behavior of Materials.Kyoto, Japan, 1971: 267-277.
    [30] JOHN R, SHAH S P.Effect of high strength and rate of loading on fracture parameters of concrete[C]//Shah S P, Swartz S E.SEM/RILEM Conference on Fracture of Concrete and Rock.Houston, TX, 1987: 35-52.
    [31] KÖRMELING H A, ZIELINSKI A J, REINHARDT H W.Experiments on concrete under single and repeated uniaxial impact tensile loading[R].Delft, Nederland: Delft University of Technology, 1980.
    [32] ZIELINSKI A J, REINHARD H W, KÖRMELING H A.Experiments on concrete under uniaxial impact tensile loading[J].Matériauxet Construction, 1981, 14(2):103-112. doi: 10.1007/BF02547644
    [33] ZIELINSKI A.J, REINHARD H.W, KÖRMELING H A.Experiments on concrete under repeated uniaxial impact tensile loading[J].Matériauxet Construction, 1981, 14(3):163-169. doi: 10.1007/BF02473920
    [34] YAN D M, LIN G.Dynamic properties of concrete in direct tension[J].Cement and Concrete Research, 2006, 36(7):1371-1378. doi: 10.1016/j.cemconres.2006.03.003
    [35] CADONI E, LABIBES K, BERRA M, et al.High-strain-rate tensile behaviour of concrete[J].Magazine of Concrete Research, 2000, 52(5):365-370. doi: 10.1680/macr.2000.52.5.365
    [36] CADONI E, LABIBES K, ALBERTINI C, et al.Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels[J].Mater Struct, 2001, 34(1):21-26. doi: 10.1007/BF02482196
    [37] CADONI E, LABIBES K, BERRA M, et al.Influence of aggregate size on strain-rate tensile behavior of concrete[J].ACI Mater J, 2001, 98(3):220-223. http://cn.bing.com/academic/profile?id=721aa38cb62e9be9d992015a636e6b69&encoded=0&v=paper_preview&mkt=zh-cn
    [38] ROSS C A, JEROME D M, TEDESCO J W, et al.Moisture and strain rate effects on concrete strength[J].ACI Mater J, 1996, 93(3):293-300. http://cn.bing.com/academic/profile?id=c8841342cd597722b8e7f090f2b41567&encoded=0&v=paper_preview&mkt=zh-cn
    [39] FARIA R, OLIVER J, CERVERA M.A strain-based plastic viscous-damage model for massive concrete structures[J].Int J Solids Struct, 1998, 35(14):1533-1558. doi: 10.1016/S0020-7683(97)00119-4
    [40] TAKEDA J.Strain rate effects on concrete and reinforcements and their contributions to structures[C]//MINDESS S, SHAH S P.Cement-Based Composites: Strain Rate Effects on Fracture, Materials Research Society Symposia Proceedings.Pittsburgh, PA: Materials Research Society, 1986, 64: 15-20.
    [41] ALBERTINI C, CADONI E, LABIBESK.Study of the mechanical properties of plain concrete under dynamic loading[J].Exp Mech, 1999, 39(2):137-141. doi: 10.1007-BF02331117/
    [42] MCVAY M K.Spall damage of concrete structures: AD-A199 225[R].1988.
    [43] TOUTLEMONDEF.Résistanceau choc des structuresenbéton: du comportement du matériau au calcul desouvrages[D].EcoleNationale des Pontset Chauss'ees, French, 1994.
    [44] ROSSI P, MIER J G M V, TOUTLEMONDE F, et al.Effect of loading rate on the strength of concrete subjected to uniaxial tension[J].Mater Struct, 1994, 27(5):260-264. doi: 10.1007/BF02473042
    [45] ANTOUN T H.Constitutive/failure model for the static and dynamic behaviors of concrete incorporating effects of damage and anisotropy[D].Dayton, OH: The University of Dayton, 1991.
    [46] ERZAR B, FORQUIN P.An experimental method to determine the tensile strength of concrete at high rates of strain[J].Exp Mech, 2010, 50(7):941-955. doi: 10.1007/s11340-009-9284-z
    [47] ERZAR B, FORQUIN P.Experiments and mesoscopic modelling of dynamic testing of concrete[J].Mech Mater, 2011, 43(9):505-527. doi: 10.1016/j.mechmat.2011.05.002
    [48] ERZAR B, FORQUIN P.Analysis and modelling of the cohesion strength of concrete at high strain-rates[J].Int J Solids Struct, 2014, 51(14):2559-2574. doi: 10.1016/j.ijsolstr.2014.01.023
    [49] JOHN R, ANTOUN T, RAJENDRAN A M.Effect of strain rate and size on tensile strength of concrete[C]//SCHMIDT S C, DICK R D, FORBES J W, et al.Shock Compression of Condensed Matter-1991.Amsterdam: North-Holland, 1992: 501-504.
    [50] KLEPACZKO J R, BRARA A.An experimental method for dynamic tensile testing of concrete by spalling[J].Int J Impact Eng, 2001, 25(4):387-409. doi: 10.1016/S0734-743X(00)00050-6
    [51] WU H J, ZHANG Q M, HUANG F L, et al.Experimental and numerical investigation on the dynamic tensile strength of concrete[J].Int J Impact Eng, 2005, 32(1):605-617. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=02ee8f32091603094cb4b39216cdbd6c
    [52] BRARA A.CAMBORDE F, KLEPACZKO J R, et al.Experimental and numerical study of concrete at high strain rates in tension[J].Mech Mater, 2001, 33(1):33-45. doi: 10.1016/S0167-6636(00)00035-1
    [53] BRARA A, KLEPACZKO J R.Experimental characterization of concrete in dynamic tension[J].Mech Mater, 2006, 38(3):253-267. doi: 10.1016/j.mechmat.2005.06.004
    [54] ROSS C A.Crack patterns resulting from high strain-rate tests on concrete: AD-A260 240[R].Gainesville, FL: University of Florida, 1992.
    [55] ROSS C A.Effect of strain rate and moisture on the tensile strength of heterogeneous materials: AD-A340 075 [R].Gainesville, FL: University of Florida, 1998.
  • 加载中
图(10)
计量
  • 文章访问数:  7859
  • HTML全文浏览量:  3496
  • PDF下载量:  193
出版历程
  • 收稿日期:  2017-01-10
  • 修回日期:  2017-03-20

目录

    /

    返回文章
    返回